首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B P Chandra 《Pramana》1982,19(5):455-465
The mechanoluminescence spectra of (Zn, Cd)S phosphors shift towards shorter wavelength side as compared to the photoluminescence spectra, however, the photoluminescence spectra shift towards shorter wavelength side with increasing pressure with less pressure coefficient. This finding eliminates the thermal population mechanism and suggests the electrical excitation mechanism for the mechanoluminescence excitation. The decay of mechanoluminescence after the deformation (Zn, Cd)S phosphors may be controlled by the recombination rate of holes and electrons, i.e. by the finite times required for the liberation of the electrons from the traps and for the electron transport, and consequently the decay of mechanoluminescence may be similar to the decay of photoluminescence.  相似文献   

2.
The mechanoluminescence (ML) of NaCl, NaBr, NaF, LiCl and LiF crystals ceases at 105, 58, 170, 151 and 175°C respectively. Both the temperatureT c at whichML disappears and the temperatureT s required to induce a particular percentage of colouration decay in a given time, decreases with increasing nearest neighbour distance in alkali halide crystals. This perhaps suggests that similar processes cause the disappearance ofml in alkali halide crystals and the colouration decay in their microcrystalline powders. It is shown that mobile dislocations may cause the leakage of surface charge and the decay of colouration in microcrystalline powders.  相似文献   

3.
B P Chandra  N Periasamy  J N Das 《Pramana》1977,8(5):395-401
The present paper reports that triboluminescence (TBL) does not appear at the instant of impact of the load but a certain time lag is required for its appearance which depends on the value of the stress applied to the crystal. Since TBL appears in sugar crystals during the creation of new surfaces, the fracture-initiation time of the crystal has been taken to be the delay time in observing TBL pulse after the application of stress. The dependence of fracture-initiation time,t f σ , of crystals on the stress, σ, may be expressed ast f σ =t o exp (− ασ), wheret o and α are constants. The values of the lattice energy, and the change in lattice energy per unit stress, of sugar crystals have been calculated from TBL measurements and they have been found to be 21·2 kcal mole−1 and 0·41 × 10−8 kcal mole−1 dyne−1 cm2 respectively.  相似文献   

4.
During the process of deforming a crystal, a high pressure is developed near the tip of mobile cracks, which may in turn produce a new ground state by thermal electron transfer. Upon sudden release of pressure, the electron can either relax to one atmosphere ground state or remain in the excited state potential well long enough to relax to one atmosphere and radiatively transfer back to the ground state. For analysing the pressure induced thermal population of the excited state, the mechanoluminescence(ML) and high pressure photoluminescence(PL) of several organic and inorganic crystals were measured. The study indicated that usual pressure coefficient of energy shift of the order of 50–100 cm−1/kbar and the stress at the crack-tip of the order of 5–10 kbar, are not sufficient to cause the thermal population of the excited state. If by any means the product of pressure coefficient and stress at the mobile crack-tip can be increased by 50 to 100 times, then the thermal population of the excited states may take place. Using the pressure coefficient of energy shift and the difference in ML and PL spectra, and using independently the change in relative intensities of the vibronic peaks, the pressure at the emitting mechanoluminescent crystal sites is evaluated and it is found to be of the order of several kbar which varies from crystal to crystal.  相似文献   

5.
A theoretical study is made on the mobile interstitial and mobile electron models of mechano-induced luminescence in coloured alkali halide crystals. Equations derived indicate that the mechanoluminescence intensity should depend on several factors like strain rate, applied stress, temperature, density of F-centres and volume of crystal. The equations also involve the efficiency and decay time of mechanoluminescence. Results of mobile interstitial and mobile electron models are compared with the experimental observations, which indicated that the latter is more suitable as compared to the former. From the temperature dependence of ML, the energy gaps between the dislocation band and ground state of F-centre is calculated which are 0.08, 0.072 and 0.09 eV for KCl, KBr and NaCl crystals, respectively. The theory predicts that the decay of ML intensity is related to the process of stress relaxation in crystals.  相似文献   

6.
B.P. Chandra   《Journal of luminescence》2008,128(7):1217-1224
During the elastic deformation of coloured alkali halide crystals, the bending segments of dislocations capture F-centre electrons lying in the expansion region of edge dislocations, to the states of dislocation band. After the separation from interacting F-centres, the captured electrons move together with the bending segments of dislocations and also drift along the axis of dislocations and subsequently the radiative electron–hole recombinations, owing to both the processes of captured-electron movement, give rise to the light emission. The generation rate of electrons in the dislocation band and the mechanoluminescence (ML) intensity initially increase with time, attain maximum value at a particular time, and then they decrease with time. The intensity Im corresponding to the peak of ML intensity versus time curve and the total intensity IT of ML increase with the applied pressure and also with the density of F-centres in the crystals. At low temperature, both Im and IT increase with temperature and at higher temperature they decrease with increasing temperature due to the thermal bleaching of F-centres and also due to the decrease in luminescence efficiency. Thus, both Im and IT are optimum for a particular temperature of the crystals. For longer time duration, the ML intensity decreases exponentially with time in which the decay time is equal to the lifetime of interacting F-centres. Expressions derived for the different characteristics of ML are able to explain the experimental results. It is shown that the time constant for rise of pressure, lifetime of the interacting F-centres or damping time of dislocation segments, and the activation energy can be determined from the ML measurements.  相似文献   

7.
Intense and unique type of mechanoluminescence (ML) is found in tetrahedral manganese (II) complexes. During the excitation of ML by the impact of a piston onto the crystal, the ML intensity initially increases with time, attains a maximum value and then decreases. After retardation of the piston, the decay rate of ML is faster during crystal deformation; however, its value decreases after cessation of the deformation and becomes equal to the decay rate of phosphorescence. The ML disappears below the melting point. Since the crystals of tetrahedral manganese (II) complexes are centrosymmetric, the local non-centrosymmetric sites near the defects are attributed to be responsible for the mechanoluminescence excitation.  相似文献   

8.
This paper reports the synthesis of ZnS:Mn nanocrystals by the chemical route in which mercaptoethanol was used as the capping agent. The particle size of such nanocrystals was measured using XRD and TEM patterns and was found to be in between 3and 5 nm. It was found that the peak position of TL glow curve and the TL intensity of ZnS:Mn nanoparticles increases as the particle size is decreased. The isothermal decay technique is used to determine the trap-depth. The stability of the charge carriers in the traps increase with the decrease in size of the nanoparticles. The higher stability may be attributed to the higher surface/volume ratio and also to the increase in the trap-depth with decreasing particle size. When a ZnS:Mn nanocrystal is deformed the peak intensity Im increases linearly with the increasing height of the load. After Im, initially the ML intensity decreases at a fast rate, and later on it decreases at a slow rate. The ML in ZnS:Mn nanocrystals can be understood on the basis of the piezoelectrically induced electron detrapping model.  相似文献   

9.
Abstract

The effect of pressure on the luminescence spectrum of the weak field system Cr3+ : LiTaO3 is presented. By using pressure to induce a low to high crystal field strength transition, we demonstrate the ability of pressure to identify distinct dopant bonding environments in luminescent materials.  相似文献   

10.
Abstract

Electrical resistance measurements have been performed on ZrS2, ZrSe2, and ZrSSe single crystals grown by Iodine vapour transport technique in the pressure range 10 kilobar to 80 kilobar (1 GPa-8GPa). It is observed that all these crystals show a decrease in resistance with increase in pressure. The results have been discussed on the basis of energy band.  相似文献   

11.
Dielectric properties of lithium–sodium–tetragermanate (LNG) LiNaGe4O9 crystal were investigated under hydrostatic pressure. The phase diagram and phase transition temperature as a function of pressure was constructed. Up to 200 MPa the dependence of TC on pressure is linear with negative slope of 8.5 K/GPa. The influence of pressure on the Curie–Weiss law was observed. It was also shown that with increasing pressure the maximum value of the electric permittivity and Curie–Weiss constant are decreasing. The obtained results revealed complex mechanism of phase transition in the ferroelectric LNG.  相似文献   

12.
Mechanoluminescence (ML) emission from coloured alkali halide crystals takes place during their elastic and plastic deformation. The ML emission during the elastic deformation occurs due to the mechanical interaction between dislocation segments and F-centres, and the ML emission during the plastic deformation takes place due to the mechanical interaction between the moving dislocations and F-centres. In the elastic region, the ML intensity increases linearly with the strain or deformation time, and in this case, the saturation region could not be observed because of the beginning of the plastic deformation before the start of the saturation in the ML intensity. In the plastic region, initially the ML intensity also increases linearly with the strain or deformation time, and later on, it attains a saturation value for large deformation. When the deformation is stopped, initially the ML intensity decreases at a fast rate; later on, it decreases at a slow rate. The decay time for the fast decrease of the ML intensity gives the relaxation time of dislocation segments or pinning time of the dislocations, and the decay time of the slow decrease of the ML intensity gives the diffusion time of holes in the crystals. The saturation value of the ML intensity increases linearly with the strain rate and also with the density of F-centres in the crystals. Initially, the saturation value of the ML intensity increases with increasing temperature, and for higher temperatures the ML intensity decreases with increasing temperature. Therefore, the ML intensity is optimum for a particular temperature of the crystals. From the ML measurements, the relaxation time of dislocation segments, pinning time of dislocations, diffusion time of holes and the energy gap between the bottom of the acceptor dislocation band and interacting F-centre level can be determined. Expressions derived for the ML induced by elastic and plastic deformation of coloured alkali halide crystals at fixed strain rates indicates that the ML intensity depends on the strain, strain rate, density of colour centres, size of crystals, temperature, luminescence efficiency, etc. A good agreement is found between the theoretical and experimental results.  相似文献   

13.
This collection presents 505 papers on ferroelectricity in single crystals, ceramics and polymers in which pointed or elliptical hysteresis loops would testify to their ferroelectric properties. In some papers, the authors ensure that ferroelectricity can occur even in materials that do not have a polar axis of symmetry.  相似文献   

14.
金刚石的限形生长有利于其后续加工.对于磨料级金刚石限形生长的研究已经比较透彻,但金刚石大单晶的限形生长尚缺乏全面系统的研究.本文以Fe Ni(64wt%:36wt%)合金为触媒,利用高温高压下的温度梯度法在5.6 GPa时对不同温度下分别沿(100)面和(111)面生长的Ib型金刚石大单晶的晶形进行了研究.研究表明:随着温度的升高,沿(100)晶面生长的金刚石大单晶的晶形分别为板状、塔状直至尖塔状,而沿(111)面生长的金刚石大单晶的晶形则分别为塔状和板状;分析了不同温度下分别沿(100)面和(111)面生长金刚石大单晶不同晶形高径比的变化情况.利用不同压力和温度下的金刚石大单晶合成实验绘制了沿(100)和(111)面生长金刚石大单晶的晶形在V形生长区域内的分布示意图,表明沿(111)面生长的金刚石大单晶V形区温度下限明显比以(100)面生长的高,而沿这两面生长金刚石大单晶的V形区温度上限差别并不明显.对不同生长面V形区温度上下限的差别进行了解释,据此实现了Ib型金刚石大单晶的限形生长.  相似文献   

15.
张润兰  邢辉  陈长乐  段萌萌  罗炳成  金克新 《物理学报》2014,63(18):187701-187701
六方YMnO_3是一种特殊的多铁性材料,因其具有介电常数低、单一极化轴、无挥发性元素等特点,在磁电领域具有独特的优势,但目前关于YMnO_3薄膜的铁电性特别是畴结构的研究相对较少.本文采用溶胶-凝胶法在Si(100)基片上制备了多铁性YMnO_3薄膜,利用掠入射X-射线衍射、原子力显微镜对薄膜的结构及表面形貌进行了分析,用压力显微镜(PFM)技术研究了纳米尺度畴结构及微区电滞行为,并通过I-V,P-E曲线进一步研究了薄膜的漏电流和宏观电滞行为.结果表明,该薄膜为六方钙钛矿结构,YMnO_3晶粒大小均匀并且结晶性较好,薄膜表面粗糙度为7.209 nm.PFM图显示出清晰的电畴结构,结合典型的微区振幅蝴蝶曲线和相位电滞回线,证实该YMnO_3薄膜具有较好的铁电性.由于受内建电场的作用,振幅曲线和相位曲线都向正向偏移,表现出非对称特征.该薄膜的漏电流密度低于10~(-6)A·cm~(-2),因而其电滞回线基本能够达到饱和.  相似文献   

16.
在国产六面顶压机上,采用温度梯度法,在5.6 GPa,1200—1400?C的高压高温条件下,裂晶问题频繁出现的合成周期内,围绕裂晶现象开展了Ib型宝石级金刚石单晶的生长研究,系统考察了降温工艺对宝石级金刚石单晶品质的影响.针对宝石级金刚石单晶常见的裂纹缺陷,借助于扫描电子显微镜,分别对优质金刚石单晶和存在裂纹金刚石单晶的表面形貌进行了表征;利用微区傅里叶转换红外光谱测试手段,对上述两类晶体的N杂质含量分别进行了测试,依据测试结果,对裂晶出现的原因进行了分析;分别采用传统断电降温和缓慢降温工艺,考察了晶体生长结束后的降温工艺对宝石级金刚石单晶品质的影响.结果表明,缓慢降温工艺在很大程度上可以有效抑制裂晶问题出现.另外,从宝石级金刚石单晶品质和单晶受到的外应力两个方面着手,分别对裂晶出现的机理和采用缓慢降温工艺有效解决裂晶问题的机理进行了讨论.  相似文献   

17.
运用第一性原理计算预言了在一纯化合物中可由压力诱导出顺序为叫方晶-单斜体-菱形体-立方体的新的相变,而且存在有变形相界面。在相变区有可与在复杂的单晶固溶体压电材料,如人们期待在机电应用方面引起革命性变化的Pb(Mg1/3Nb2/3)O3-PbTiO3可比的,极大的介电和压电耦合常数。我们的结果表明变形相界面和巨压电效应并不需要内禀的无序,并打开了在简单系统中研究这一效应的可能性,  相似文献   

18.
We investigate the photoluminescence excitation spectra in ZnS:Mn single crystals at room temperature and at the temperature of liquid nitrogen with a different concentration of Mn2+ ions. The strongest bands peaking at 557, 578, 600, and 637 nm are associated with a different position of the Mn ion in the lattice of the crystals under investigation. The difference obtained in the excitation spectra can be explained by the resonance transfer of energy between the Mn ions. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 67, No. 2, pp. 208–210, March–April, 2000.  相似文献   

19.
吴志刚  Ronald E. Cohen 《物理》2006,35(01):14-15
运用第一性原理计算预言了在一纯化合物中可由压力诱导出顺序为四方晶-单斜体-菱形体-立方体的新的相变,而且存在有变形相界面.在相变区有可与在复杂的单晶固溶体压电材料,如人们期待在机电应用方面引起革命性变化的Pb(Mg1/3Nb2/3)O3-PbTiO3可比的,极大的介电和压电耦合常数.我们的结果表明变形相界面和巨压电效应并不需要内禀的无序,并打开了在简单系统中研究这一效应的可能性.  相似文献   

20.
胡婷  阚二军 《物理学报》2018,67(15):157701-157701
铁电材料是一类重要的功能材料,铁电元件的小型化、集成化是当今铁电材料发展的一大趋势.但是尺寸效应、表面效应等的存在制约了传统块体铁电材料在纳米尺度下的应用,因而低维度纳米材料中的铁电性能研究成为当前材料科学领域的研究热点之一.本文综述了近年来理论和实验上关于低维铁电材料的探索,包括二维范德瓦耳斯层状铁电材料、共价功能化低维铁电材料、低维钙钛矿材料、外界调控以及二维"铁电金属"等材料的理论预言与实验铁电性的观测;也提出一些物理新机制来解释低维下的铁电性;最后对该领域今后的发展进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号