共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase relations around langasite (LGS, La3Ga5SiO14) were studied on the basis of phase assemblage observed during calcination and crystallization process of samples of various compositions in the ternary system La2O3–Ga2O3–SiO2. A ternary compound of apatite structure, La14GaxSi9–xO39–x/2 was found for the first time. Crystallization of this compound was observed in the cooling process of molten samples of stoichiometric LGS as well as LGS single crystal, demonstrating that LGS is an incongruent-melting compound. A phase diagram was established primarily based on the crystallization sequence in the cooling process. 相似文献
2.
YBa2Cu4O8 is a stoichiometric oxide superconductor of Tc80 K. Unlike YBa2Cu3O7−δ, this compound is free from oxygen vacancy or twin formation and does not have any microscopic disorder in the crystal. Doping with Ca raises its Tc to 90 K. The compound is a promising superconductor for technological application. Up to now, single crystals have not been grown without using specialized apparatus with extremely high oxygen pressure up to 3000 bar and at over 1100 °C due to the limited range of reaction kinetics of the compound. This fact has delayed the progress in the study of its physical properties and potential applications. We present here a simple growth method using KOH as flux that acts effectively for obtaining high-quality single crystals in air/oxygen at the temperature as low as 550 °C. As-grown crystals can readily be separated from the flux and exhibit a perfect orthorhombic morphology with sizes up to 0.7×0.4×0.2 mm3. Our results are reproducible and suggest that the crystals can be grown using a conventional flux method under ambient condition. 相似文献
3.
We study how an oxygen-deficient crystal of TiO2 crystal grows when exposed to O2. While the O flux is external to the crystal, the Ti flux necessary for growth comes from internal (bulk) interstitials (Phys. Rev. Lett. 76 (1996) 791). We address where the reaction between O and Ti to form new crystal takes place in the regime of pure step flow (i.e., surface steps advancing without new-layers nucleating). The detailed partitioning of the growth flux among individual surface steps is studied using low-energy electron microscopy for two geometries on the (110) surface—an array of islands on a terrace and an island stack generated from a dislocation source. For both geometries, the areas of islands larger than the critical size grow at rates strictly proportional to their perimeter length, independent of the local step configuration. In addition, we find that the growth rate is proportional to the O2 pressure. The step flow represents a simple limiting case of crystal growth (Phil. Trans. R. Soc. A. 243 (1951) 299)—only the growth species near a step edge becomes incorporated into the crystal. That is, only Ti and O reactions near the step edge lead to crystal growth. This case is in marked contrast to crystal growth controlled by species attaching to terraces and diffusing to steps, for which the growth rates depend upon the local step environment. Indeed, simulating the island array as if the growth flux was partitioned among the individual islands by concentration gradients (i.e., diffusion-controlled growth) totally failed to reproduce the experimental rates. 相似文献
4.
The preparation of large bulk oxide eutectics with homogeneous and dense structure in nano-scale by melt growth method is a difficult challenge. Fully dense, homogeneous and crack-free ternary nanostructured Al2O3/YAG/ZrO2 hypereutectic plate with large surface is successfully obtained by laser remelting. The hypereutectic in selected composition presents an ultra-fine eutectic-like microstructure consisting of alternating interpenetrating Al2O3, YAG and ZrO2 lamellae with mean interphase spacing of about 150 nm, which is much smaller than the ternary eutectic composition grown at the same growth conditions. With the increase of laser scanning rate, the lamellar spacing is rapidly decreased. The minimum value obtained is 50 nm. The analysis indicates that the strong faceted growth behavior and cooperative branching of the component phases related with high entropies of fusion and large kinetic undercooling during laser rapid solidification are the primary formation reasons for the irregular eutectic growth morphology. Furthermore, the unique cellular microstructure with complex structure is also observed at high growth rate, and their formation mechanism and effect of the composition on the microstructure are discussed. 相似文献
5.
Single crystals of PbMg1/3Ta2/3O3 (PMT) were grown by the flux method. The PbO–Pb3O4–B2O3 system was used as a solvent. Transparent and light yellow PMT single crystals of rectangular shape and dimensions up to 10×6×4 mm3 were obtained. For the applied growth conditions only, the crystals of the perovskite structure were grown. X-ray diffraction tests showed that at room temperature PMT exhibits cubic symmetry with lattice parameter a=4.042(1) Å. Dielectric studies pointed to relaxor properties of PMT. The characteristic broad and frequency-dependent maximum of dielectric permittivity was observed at 179.7 K (1 kHz). 相似文献
6.
Indium oxide (In2O3) nanobelts have been fabricated by thermal evaporation of metallic indium powders with the assistance of Au catalysts. The as-synthesized nanobelts are single-crystalline In2O3 with cubic structure, and usually tens of nanometers in thickness, tens to hundreds of nanometers in width, and several hundreds of micrometers in length. The room temperature photoluminescence spectrum of In2O3 nanobelts features a broad emission band at 620 nm, which could be attributed to oxygen deficiencies in the as-synthesized belts. The formation of In2O3 nanobelts follows a catalyst-assistant vapor—liquid–-solid growth mechanism, which enables the controlled growth of individual belts on predetermined sites. 相似文献
7.
CuInSe2 (CIS) ingots have been prepared by direct reaction of stoichiometric and non-stoichiometric proportions of high-purity Cu, In and Se. Two approaches, namely the one-ampoule process (quartz crucible) and two-ampoule process (graphite crucible) were investigated to grow the crystals, using starting charges with excess copper, and (nearly stoichiometric and with excess indium), respectively. The effect of deviation from stoichiometry in the charge on the physical properties of the resulting polycrystals is presented. Compositional analysis of the best part of the ingots with starting metals ratio (Cu/In) greater than or equal to 1 showed that the matrix preserved the original character of the charge and evidenced that the CIS chalcopyrite structure, -CIS, tolerates well a large In excess. In contrast, the composition of the crystal prepared with a 10% Cu excess was nearly-stoichiometric, with chemical images revealing the formation of heterogeneous phases besides -CIS. The inclusions precipitation was found to increase toward the ingot base. Interestingly, powder X-ray diffraction measurements revealed the presence of secondary phases rather in all the samples. The corresponding diffraction peaks were however few and very weak, with intensities of less than 3% the maximum value recorded for the CIS (1 1 2) plane. 相似文献
8.
F. Khlissa M. Frid M.C. Pujol X. Mateos J.J. Carvajal F. Díaz M. Aguil 《Journal of Crystal Growth》2009,311(18):4360-4364
Europium-doped NaY(PO3)4 single crystals have been synthesized by the flux method with sizes around 1 mm3. The unit cell parameters at room temperature refined by X-ray powder diffraction are a=7.1510(4) Å; b=13.0070(8) Å; c=9.6973(2) Å; β=90.606(3)°, Z=4 with the space group P21/n in monoclinic system. The present single crystals have a needle shape, they are elongated along the a crystallographic direction, and their size is in the 500 μm–1 mm range. The linear thermal expansion tensor parameters were determined, being the maximum value along the b direction, 16.1×10−6 K−1 and the minimum along the a direction being 11.7×10−6 K−1. The IR vibration modes attributed to the group P–O are consistent with the crystallographic data concerning the chain aspect of the phosphate anion. This material melts incongruently at 1141 K. Intense visible emissions attributed to Eu3+ 5D0→7F1, 5D0→7F2 and 5D0→7F4, electronic transitions have been observed after pumping at 355 nm at room temperature. 相似文献
9.
Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and . A self-catalytic vapor–liquid–solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions. 相似文献
10.
Single crystals of rutile-type GeO2 having a structure equivalent to that of TiO2, a well-known photocatalyst, have been grown for the first time in supercritical oxygen at approximately 5 GPa and 3000 K. The obtained crystals exhibit a rectangular hollow tube structure with submicron size (cross section with sides of ∼500 nm, wall thickness of ∼20 nm, and longitudinal length of ∼5 μm). These single crystals were grown within 1 s and along the c-axis surrounded by the (1 1 0) faces. The crystal growth mechanism strongly depends on the growth mechanism of rutile-type oxides, and the extremely short growing time is an important factor in the formation of hollow tube crystals. 相似文献
11.
Selective growth of WO2, W and WO3−x crystals from amorphous WO3 film by vacuum heating at 400–900°C was clarified. The grown WO3−x crystals were incommensurate structure based on crystallographic share structure. The growth process of WO2 crystal in the amorphous film was directly observed at high temperature in the electron microscope. The growth front of the WO2 crystal consumes WO3 microcrystallites with various orientations. The growth speed of the WO2 depended on WO3 microcrystallites orientation. The origin of the wavy growth front of WO2 was due to an orientation dependence of the WO3 microcrystallites. 相似文献
12.
Shiwen Shu Dabin YuYan Wang Feng WangZirong Wang Wu Zhong 《Journal of Crystal Growth》2010,312(21):3111-3116
This paper reports on the thermal-induced performance of hexagonal metastable In2O3 nanocrystals involving in phase transition and assembly, with particular emphasis on the assembly for the preparation of functional materials. For In2O3 nanocrystals, the metastable phase was found to be thermally unstable and transform to cubic phase when temperature was higher than 600 °C, accompanied by assembly as well as evolution of optical properties, but the two polymorphs coexisted at the temperature ranging from 600 to 900 °C, during which the content of product phase and crystal size gradually increased upon increasing temperature. The assembly of In2O3 nanocrystals can be developed to fabricate In2O3 functional materials, such as various ceramic materials, or even desired nano- or micro-structures, by using metastable In2O3 nanocrystals as precursors or building blocks. The electrical resistivity of In2O3 conductive film fabricated by a hot-pressing route was as low as 3.72×10−3 Ω cm, close to that of In2O3 single crystal, which is important for In2O3 that is always used as conductive materials. The findings should be of importance for both the wide applications of In2O3 in optical and electronic devices and theoretical investigations on crystal structures. 相似文献
13.
C. Opagiste M. Leroux P. Rodière G. Garbarino S. Pairis P. Bordet P. Lejay 《Journal of Crystal Growth》2010,312(21):3204-3208
Highly perfect single crystal whiskers of Lu5Ir4Si10 were successfully grown out of the melt. Details of the surface and morphology of the whiskers are presented. X-ray diffraction data confirmed that the whisker structure has the same tetragonal P4/mbm space group symmetry as bulk single crystals with lattice parameters a=12.484(1) and c=4.190(2) Å. By means of field emission scanning electron microscopy, the morphology of the whiskers has been studied. Using a 4-circle X-ray diffractometer we found that whiskers grow along the c-axis direction and all side faces are oriented along the [1 1 0] direction. The mosaicity has been measured and is found to be almost perfect: below 0.15° along the c-axis. According to our transport measurements performed along the c-axis, the whiskers present a sharp superconducting transition at Tc=4.1 K and show a charge density wave (CDW) transition at 77 K. From the hysteresis of the temperature dependance of the electrical resistivity study, the CDW transition is found to be of first order. 相似文献
14.
A high optical quality erbium doped Lu2SiO5 single crystal has been grown by the Czochralski method. The distribution coefficient of Er3+ was measured to be ∼0.926. The absorption and emission spectra as well as the fluorescence decay curve of the excited state 4I13/2 were measured at room temperature. The spectroscopic parameters were calculated using the Judd–Ofelt theory, and the J–O parameters Ω2, Ω4 and Ω6 were found to be 4.451×10-20, 1.614×10-20 and 1.158×10-20 cm2, respectively. The room-temperature fluorescence lifetime of the Er3+4I13/2→4I15/2 transition was measured to be 7.74 ms. The absorption and emission cross-section as well as the gain cross-section in the eye-safe regime of 1400–1700 nm were also determined and discussed. 相似文献
15.
Without the use of any extra surfactant or template, γ-MnOOH single crystalline nanowires were synthesized directly through the hydrothermal reaction between KMnO4 and toluene in distilled water at 180 °C for 24 h; and β-MnO2 single crystalline nanowires could be obtained just by calcination of the γ-MnOOH nanowires in air at 280 °C for 5 h. The as-prepared γ-MnOOH and β-MnO2 nanowires were characterized by X-ray powder diffraction, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, scanning electron microscope, transmission electron microscope, high-resolution transmission electron microscope and selected area electron diffraction. 相似文献
16.
17.
Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 (PZNT91/9) single crystals were grown by a modified Bridgman method directly from melt using an allomeric Pb[(Mg1/3Nb2/3)0.69Ti0.31]O3 (PMNT69/31) single crystal as a seed. X-ray diffraction (XRD) measurement confirmed that the as-grown PZNT91/9 single crystals are of pure perovskite structure. Electrical properties and thermal stabilization of PZNT91/9 crystals grown directly from melt exhibit different characters from those of PZNT91/9 crystals grown from flux, although segregation and the variation of chemical composition are not seriously confirmed by X-ray fluorescence analysis (XPS). The [0 0 1]-oriented PZNT91/9 crystals cut from the middle part of the as-grown crystal boules exhibit broad dielectric-response peaks at around 105 °C, accompanied by apparent frequency dispersion. The values of piezoelectric constant d33, remnant polarization Pr, and induced strain are about 1800–2200 pC/N, 38.8 μC/cm2, and 0.3%, respectively, indicating that the quality of PZNT crystals grown directly from melt can be comparable to those of PZNT91/9 single crystals grown from flux. However, further work deserves attention to improve the dielectric properties of PZNT crystals grown directly from melt. Such unusual characterizations of dielectric properties of PZNT crystals grown directly from melt are considered as correlating with defects, microinhomogeneities, and polar regions. 相似文献
18.
Yeju Huang Hongpeng You Yanhua Song Guang Jia Mei Yang Yuhua Zheng Lihui Zhang Kai Liu 《Journal of Crystal Growth》2010,312(21):3214-3218
NaYF4:Yb,Er micro/nanocrystals with different sizes and morphologies such as nanospheres, short flexural nanorods, and half opened microtubes, were synthesized in reverse microemulsion under solvothermal condition using the quaternary reverse microemulsion system, CTAB/1-butanol/cyclohexane/aqueous solution. The X-ray diffraction analysis confirmed that cubic phase NaYF4:Yb,Er can completely transform to hexagonal phase with increasing reaction time. The scanning electron microscope and transmission electron microscope images revealed that the morphology of the product can be tailored by varying the reaction time. A possible crystalline growth process of the NaYF4:Yb,Er micro/nanocrystals was discussed. The obtained half opened microtubes exhibited an intense green upconversion luminescence, which may be attractive in novel optoelectronic devices. 相似文献
19.
Hajime Kiyono Toshiki SakaiMari Takahashi Shiro Shimada 《Journal of Crystal Growth》2010,312(19):2823-2827
Thermogravimetric analysis (TGA) and microstructural observations were carried to investigate the nitridation mechanism of β-Ga2O3 powder to GaN under an NH3/Ar atmosphere. Non-isothermal TGA showed that nitridation of β-Ga2O3 starts at ∼650 °C, followed by decomposition of GaN at ∼1100 °C. Isothermal TGA showed that nitridation follows linear kinetics in the temperature range 800–1000 °C. At an early stage of nitridation, small GaN particles (∼5 nm) are deposited on the β-Ga2O3 crystal surface and they increase with time. We proposed a mechanism for the nitridation of Ga2O3 by NH3 whereby nitridation of β-Ga2O3 proceeds via the intermediate vapor species Ga2O(g). 相似文献
20.
Jing Li Jiyang Wang Xiufeng Cheng Xiaobo Hu P. A. Burns J. M. Dawes 《Journal of Crystal Growth》2003,250(3-4):458-462
Large optical-quality Yb:YAl3(BO3)4(Yb:YAB) crystals have been grown by the flux method. The thermal properties of Yb:YAB crystal were measured for the first time. The thermal properties of Yb:YAB crystal with different Yb3+ ion concentrations are also reported. The results show that the ytterbium concentration influences the properties of Yb:YAB crystal. The specific heat decreases with the increase of Yb3+ ion concentrations in the experiment range. Apparently, the thermal expansion coefficient increases along the c-direction with the increase of Yb3+ ion concentrations, while it changes slightly along the a-direction. The output laser in 1120–1140 nm ranges has been demonstrated pumped by InGaAs laser. The slope efficiency is 3.8%. The self-frequency-doubling output power of 1 mW is achieved. 相似文献