首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline double perovskites Sr2Fe1?x Cr x Mo1?x W x O6 with x = 0, 0.05, 0.10, 0.15, 0.20, and 0.30 have been prepared by sold state reactions. A continuous decrease of the tetragonal unit cell parameters α and c with increasing x values is observed. The highest Curie temperature T C = 426 K is recorded for the x = 0.10 compound. 57Fe Mössbauer spectroscopy measurements indicate a non-integral electronic configuration of ~3d5.3 for the Fe ions at the ordered double perovskite structure for x ≤ 0.20, which reaches ~3d5.4 for x = 0.30. Fe–Mo/W anti-site and anti-phase boundary defects are observed in all samples in equal concentrations of around 3% of the total number of Fe ions in their structure.  相似文献   

2.
The electronic structures of Fe-based superconductor SmFeAsO1−xFx and SmFe1−yIryAsO are compared through X-ray photoemission spectroscopy in this study. With fluorine or iridium doping, the electronic structure and chemical environment of the SmFeAsO system were changed. The fluorine was doped at an oxygen site which introduced electrons to a reservoir Sm–O layer. The iridium was doped at an Fe site which introduced electrons to a conduction Fe–As layer directly. In a parent material SmFeAsO, the magnetic ordering corresponding to Fe3d in the low-spin state is suppressed by both fluorine and iridium doping through suppressing the magnetism of 3d itinerant electrons. Compared to fluorine doping, iridium doping affected superconductivity more significantly due to an iridium-induced disorder in FeAs layers.  相似文献   

3.
In order to elucidate the anisotropic pressure effect on superconductivity in an iron-based superconductor, magnetization measurements have been performed in Ba(Fe0.92Co0.08)2As2 single crystals under uniaxial pressures applied along the c-axis. Gigantic Tc suppression, dTc/dP//c = −15 K/GPa, was observed when the anisotropic deformation with the a-expansion and c-compression was induced by the c-pressure, which should be compared with dTc/dP < +1 K/GPa in the isotropic pressure case. This suggests that the a-axis (c-axis) compression has a positive (negative) contribution to Tc.  相似文献   

4.
The spectral and kinetic parameters of M1−xCexF2+x (x=0.35, M=Ca, Sr, Ba) crystals luminescence have been studied. These characteristics are compared to the luminescence of solution base hosts: MF2:Ce and CeF3. The emission bands of heavily Ce-doped alkali earth fluorides are closed to the spectrum of perturbed Ce-center in CeF3 at T=9 K. Luminescence of M0.65Ce0.35F2.35 crystals reveals the efficient excitation in the UV and VUV ranges. The main feature of the emission and excitation spectra of Ce3+ luminescence is the displacement to the low-energy range according to the bandgap decrease in the Ca-, Sr- and Ba-based fluorides, respectively. Small Stokes shift leads to the reabsorption and light yield decrease. Luminescence peculiarities of M1−xCexF2+x solid solution and the role of Ce-enriched inclusions are discussed.  相似文献   

5.
T Kohara 《Pramana》2002,58(5-6):755-760
NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si NMR signals arising from the antiferromagnetic (AF) region besides the previously observed 29Si NMR signals which come from the paramagnetic (PM) region in the sample. This gives definite evidence for spatially-inhomogeneous development of AF ordering below T 0 of 17.5 K. The volume fraction is enhanced by applied pressure, whereas the value of internal field (∼91 mT) remains constant up to 8.3 kbar. In the AF region, the ordered moment is about one order of magnitude larger than 0.03 μB. (2) CeTIn5: The pressure and temperature (T) dependences of nuclear spin-lattice relaxation rate 1/T 1 of 115In in CeTIn5 have shown that the superconductivity (SC) occurs close to an AF instability. From the T dependences of 1/T 1 and Knight shift below T c. CeTIn5 has been found to exhibit non-s wave (probable d wave) SC with even parity and line nodes in the SC energy gap.  相似文献   

6.
The relaxor behavior was revealed in the solid solution (1−x)BaSnO3-xPbTiO3[(1−x)BSn-xPT] with compositions near x=0.50. The real permittivity (ε) and loss tangent (tanδ) exhibit diffuse and dispersive maxima, whose temperature shifts towards a higher temperature upon the increasing frequency. The frequency dependence of the temperature of the dielectric maximum (Tm) follows the Vogel-Fulcher law, as in the canonical relaxor. A deviation from the Curie-Weiss law was observed below the Burns temperature (TB) and well above the Curie temperature (TC). These phenomena are well consistent with typical relaxors, which explains the existence of the relaxor behavior in the (1−x)BSn-xPT solid solution.  相似文献   

7.
The structure and magnetostriction of Tb0.2Pr0.8(Fe0.4Co0.6)1.93−xCx intermetallic compounds were studied by X-ray diffraction and magnetic measurements. Almost a single cubic Laves phase forms in the alloys for x ≤0.20, and a small amount of C can inhibit the formation of the 1:3 phase. The lattice parameter increases when 0≤x≤0.15, while the Tc and the spontaneous magnetization decreases with increasing x. The lattice parameter decreases slowly when 0.15≤x≤0.30, while the Tc decreases evidently with increasing x. The magnetostriction λa (=λ-λ) is improved at low magnetic fields at room temperature for the compounds with 0.05≤x≤0.10, indicating that these C-containing compounds are promising magnetostrictive materials.  相似文献   

8.
New blue-green emitting Sr4Al14O25:Ce3+ phosphor is reported in this paper. The polycrystalline samples of phosphor were prepared by the conventional solution combustion method and checked for crystallization and phase by X-ray diffraction. Photoluminescence studies reveal the emission at 472 and 511 nm that correspond to the transition between lowest T2g level of the 5d state to the 2F5/2 and 2F7/2 ground state levels of the Ce3+. The excitation at 275 nm corresponds to O2−→Ce4+ charge transfer processes to lowest 5d state of Ce ion (T2g). Phosphorescence decay procedures reveal the existence of slow, medium, and fast component involved in the process. Varying the γ-dose (1-6 Gy), thermoluminescence (TL) measurements were made and glow curve maximum is obtained at 383 K. The phosphor seems to follow a first-order kinetics due to non-shifting Tm property. The Tm-Tstop method followed by the repeated initial rise method is applied to determine the distribution of activation energies and corresponding maximum positions. Chi-square minimization procedures provide the appropriate peak positions and other trapping parameters. From deconvolution results, the activation energies are found to be 0.84 and 1.06 eV, while the frequency factor is of the order of 1010 and 1011 s−1, respectively.  相似文献   

9.
Single-phase M-type hexagonal ferrites Sr1−xLaxFe12O19 (0≤x≤1) were prepared by a ceramic route. The stability limits of the ferrite phases were determined with a combination of various microscopy techniques, electron-probe micro-analysis, powder X-ray diffraction and thermal analysis. SrFe12O19 (x=0) is stable up to 1420 °C, whereas LaFe12O19 (x=1) exists between 1360 and 1400 °C only. The lattice parameters of Sr1−xLaxFe12O19 exhibit a linear variation with x, i.e. a0 slightly increases and c0 decreases with x, leading to a decrease of the unit cell volume with x. The saturation magnetization at T=5 K decreases with increasing La concentration. Room temperature Mössbauer analysis shows that the Fe3+/Fe2+ valence change occurs in the 2a sites for the whole composition range.  相似文献   

10.
Europium (Eu3+) doped YBa3B9O18 were synthesized by conventional solid state solidification methods. (Y1−xEux)Ba3B9O18 formed solid solutions in the range of x=0–1.0. The luminescence property measurements upon excitation in ultraviolet–visible range show well-known Eu3+ excitation and emission. The charge transfer excitation band of Eu3+ dominates the excitation spectra. The emission spectrum of Eu3+ ions consists mainly of several groups of lines in the 550–720 nm region, due to the transitions from the 5D0 level to the levels 7FJ (J=0, 1, 2, 3, 4) of Eu3+ ions. The dependence of luminescence intensity on Eu3+ concentration shows no concentration quenching for fully concentrated EuBa3B9O18. Eu3+ doped YBa3B9O18 are promising phosphors for applications in displays and optical devices.  相似文献   

11.
The spin valve effect for the superconducting current based on the superconductor/ferromagnet proximity effect has been studied for a CoO x /Fe1/Cu/Fe2/Cu/Pb multilayer. The magnitude of the effect ΔT c = T c AP ? T c P , where T c P and T c AP are the superconducting transition temperatures for the parallel (P) and antiparallel (AP) orientation of magnetizations, respectively, has been measured for different thicknesses of the Fe1 layer d Fe1. The obtained dependence of the effect on d Fe1 reveals that ΔT c can be increased in comparison with the case of a half-infinite Fe1 layer considered by the previous theory. A maximum of the spin valve effect occurs at d Fe1d Fe2. At the optimal value of d Fe1 almost full switching from the normal to the superconducting state when changing the mutual orientation of magnetizations of the iron layers Fe1 and Fe2 from P to AP is demonstrated.  相似文献   

12.
To consider the origin of a pseudogap and a superconducting (SC) gap found in the high-Tc cuprates, we evaluated the momentum dependence of the singlet gap corresponding to the pseudogap and the SC gap in the tJ model, using an optimization variational Monte Carlo (VMC) method. In the underdoped regime, the singlet gap is significantly modified from the simple dx2-y2(d)-wave gap (∝ cos kx − cos ky) by the contribution of long-range pairings. Its angular dependence at the quasi Fermi surface is qualitatively consistent with those experimentally observed in both hole and electron-doped cuprates. On the other hand, a SC gap is almost unchanged, preserving the original simple d-wave form. Thus, it seems that the incoherent part of the singlet gap mainly influences the forms of observed gaps.  相似文献   

13.
Bismuth layer-structured (Bi7−xSrx)(Fe3−xTi3+x)O21 (BSFT) ceramics were synthesized and the ferroelectric properties and crystal structure were investigated. X-ray powder diffraction profiles and refinement of the lattice parameters indicated single phase BSFT was obtained in the composition range 0-1.5. The lattice parameter b of BSFT remained almost constant, while a slight decrease in the lattice parameter a was observed by the Sr and Ti substitution for Bi and Fe, respectively, which indicated an increase in the orthorhombicity. The dependence of the BSFT lattice parameter on temperature implied a phase transition from the orthorhombic to the tetragonal phase, which was in good agreement with the Curie temperature. The remnant polarization Pr, of BSFT was significantly improved by the Sr and Ti substitution for Bi and Fe, and ranged from 9 to 16 μC/cm2, although no remarkable variation in the coercive field Ec was observed. As a result, a well-saturated P-E hysteresis loop of BSFT ceramic was obtained at x=0.5 with a Pr of 30 μC/cm at an applied voltage of 280 kV/cm.  相似文献   

14.
A low temperature (1100 °C) process of preparing F-doped SmFeAsO samples has been developed using SmF3 with nanometer scale as the source of fluorine. A series of the SmFeAsO1−xFx (= 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples have been prepared using the present method. Compared with previous reports, the present SmF3 is more effective to introduce F into SmFeAsO system in which a transition temperature of 39 K can be observed when = 0.05. The superconductivity is definitely enhanced with the increasing F-doping level. All the samples presented to be layered structure and the crystal particle size is about three times larger with sintering time increasing from 36 h to 48 h. Except for the nanometer scale of SmF3, the flux effect of SmF3 is recognized to be another reason for the decrease of the sintering temperature. Further more, a relatively large amount of SmF3 was also employed in the raw materials to introduce excessive F and this has induced higher Tc (55 K) in SmFeAsO0.8F0.2+δ system.  相似文献   

15.
In the study, in order to develop the lead-free piezoelectric ceramics for actuator, transformer and other electronic-devices application, (K0.5Na0.5)(Nb0.9+xTa0.1)O3 + 0.5 mol% CuO + 0.2 mol% MnO2 ceramics were prepared by conventional mixed oxide method. The effects of B-site non-stoichiometry in [(K0.5Na0.5)] [(Nb0.9+xTa0.1)O3] ceramics on microstructure and piezoelectric properties were investigated. The density, electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric constant (d33), TC and TO-T of NKNT ceramics with x = 0.0065 showed the optimum values of 4.58 g/cm3, 0.427, 1554, 109 pC/N, 373 °C and 226 °C, respectively, suitable for piezoelectric motor, and transformer applications.  相似文献   

16.
The magnetic properties of Nd4.5Fe77−xMnxB18.5 (x=0, 1 and 2) nanocomposites prepared by the crystallization of amorphous precursors were investigated. Addition of Mn is found to decrease the crystallization temperature of the amorphous ribbons. The intrinsic coercivity iHc and maximum energy product (BH)max increase from 2.6 kOe and 9.1 MGOe for x=0 to 3.1 kOe and 10.3 MGOe for x=1, respectively, and the remanence ratio Mr/Ms increases from 0.70 to 0.72. The effect of Mn on Curie temperature TC and the thermal stability of Mr and iHc were also studied. 57Fe Mössbauer spectra have been recorded for x=0, 1 and 2 ribbons at room temperature and site preference of the Mn atoms in Fe3B and Nd2Fe14B phases is discussed using the Mössbauer spectroscopy.  相似文献   

17.
Bulk InxSe1−x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(kα) radiation in the wave vector interval 0.28≤k≤6.5 A0−1.The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r1=0.263 and r2=0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In2Se3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of InxSe1−x chalcogenide glass has been studied. The glass transition activation energy (Eg) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating Tg theoretically.  相似文献   

18.
Electrical resistivity (?) of FeV alloys containing 0.5, 0.9, 2.7, and 6.1 at% V has been measured as a function of temperature (T) between 78 and 1200 K. The ? vs. T curves exhibit a change in the slope at the ferromagnetic Currie temperature (Tc). The d?/dT vs. T curves in the neibhorhood of Tc are similar to the corresponding plot for pure Fe. Our studies confirm the previously observed anomalous effect of V on Tc of Fe, i.e., that Tc increase with small additions of V to Fe. The critical index λ+ associated with the power law of d?/dT just above Tc has been determined as a function of V concentration.  相似文献   

19.
We have fabricated high-quality FeSe1−x superconducting films with a bulk Tc of 11–12 K on different substrates, Al2O3(0 0 0 1), SrTiO3(1 0 0), MgO(1 0 0), and LaAlO3(1 0 0), by using a pulsed laser deposition technique. All the films were grown at a high substrate temperature of 610 °C, and were preferentially oriented along the (1 0 1) direction, the latter being to be a key to fabricating of FeSe1−x superconducting thin films with high Tc. According to the energy dispersive spectroscopy data, the Fe:Se composition ratio was 1:0.90 ± 0.02. The FeSe1−x film grown on a SrTiO3 substrate showed the best quality with a high upper critical magnetic field [Hc2(0)] of 56 T.  相似文献   

20.
BixY3−xFe5O12 thin films have been grown on GGG (Gd3Ga5O12) (1 1 1) substrates by the combinatorial composition-spread techniques under substrate temperature (Tsub) ranging from 410 to 700 °C and O2 pressure of 200 mTorr. In order to study the effect of substrates on the deposition of BixY3−xFe5O12 thin films, garnet substrates annealed at 1300 °C for 3 h were also used. Magneto-optical properties were characterized by our home-designed magneto-optical imaging system. From the maps of Faraday rotation angle θF, it was evident that the Faraday effect appears only when Tsub = 430-630 °C. θF reaches to the maximum value (∼6°/μm, λ = 632 nm) at 500 °C, and is proportional to the Bi contents. XRD and EPMA analyses showed that Bi ions are easier to substitute for Y sites and better crystallinity is obtained for annealed substrates than for commercial ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号