首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Mechanical and electrical properties of silver stabilizer layer of coated conductor, which was prepared using nano silver paste as starting materials, have been investigated. Nano silver paste was coated on YBCO (Y1Ba2Cu3O7−δ) film by a dip coating method with a speed of 25 mm/min. Coated film was dried in air and heat treated at 400–700 °C in a flowing oxygen atmosphere. Adhesion strength between YBCO and silver layer was measured by Tape test (ASTM D 3359). The hardness and electrical conductivity of the sample were measured by pencil hardness test (ASTM D 3363). Surface and volume resistance were measured by using LORESTA-GP (MITSUBISHI). The sample heat treated at 500 °C showed poor adhesiveness of 1B but it is clearly enhanced to 5B when samples were heat treated at higher than 600 °C. The silver layer heat treated at 700 °C showed a high hardness value of higher than 9H and a volume resistance of 1.417 × 10−7 Ω mm at room temperature. SEM observations showed that a dense silver layer was formed with a thickness of about 2 μm. Dip coated silver layer prepared by using nano silver paste showed superior electrical and mechanical characteristics which is comparable to those that sputter deposited Ag layer.  相似文献   

2.
The synthesis and characterization of a new molecular silver precursor is reported. The presented complex [Ag(DioxoNic)2]NO3 (DioxoNic=(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl nicotinate) can be obtained by the reaction of silver(I) nitrate and (2,2-Dimethyl-1,3-dioxolan-4-yl)methyl nicotinate in ethanol. The product crystallizes in the monoclinic space group P21/c (No. 14). Concentrated ethanolic solutions allow the fabrication of thin films via dip coating. Using UV-irradiation and subsequent moderate temperature treatment compact films of elemental silver can be obtained. The resulting silver films show excellent electrical properties with sheet resistances down to 0.7 Ω/sq at a film thickness of 25 nm corresponding to a specific electrical resistance of 1.75×10−8 Ωm very close to the value of bulk silver. For the potential application in optoelectronic devices, the complex was tested as an ink in a soft printing process for the preparation of patterned silver films.  相似文献   

3.
Tetraethoxy silane was used to functionalize the surface of fiber glass (FG) for adsorption with the electroless plated silver shell. The performance of electroless silver plated FG with tetraethoxy silane modification was compared to that of unmodified FG in terms of mechanical and electrical properties. The silane bridge provided more stability for binding with different concentrations of electroless plating silver ions. The characterization was investigated by using field emission scanning electron microscope (FESEM), X-ray diffraction patterns (XRD), energy-dispersion X-ray (EDX), metal microscope (MM) and electric resistance. The Ag coating on TEOS modified FG was more durable than that of unmodified FG in the ball milling test, as confirmed by the data of electric resistance and residue weight. The optimized conditions for producing the Ag coating FG were also investigated. The Ag-Si-FG-3-c product in this study has the lowest electrical resistance of 1.56 × 103 Ω/cm2 and good mechanical stability as exhibited in ball milling tests.  相似文献   

4.
Silver nanoparticles have been prepared using hydrogen gas as the reducing agent for silver nitrate and poly(vinyl pyrrolidone) as the capping agent; the reaction was carried out at 70 °C for 3 h. The size of the nanoparticles was found to be about 20 nm as analyzed using transmission electron micrographs. The X-ray diffraction pattern revealed the face-centered cubic (fcc) structure of silver nanoparticles. The linear absorption of Ag nanoparticles, α, is obtained about 3.71 cm−1. The non-linear refractive indices of silver nanoparticles were defined by the z-scan technique using CW He-Ne laser (λ = 632.8 nm) at different incident intensities. The magnitude of non-linear refractive index (n2) was measured to be in the order of 10−7 (cm2/W) with a negative sign. Therefore self-defocusing phenomena is taking placed for Ag nanoparticles.  相似文献   

5.
TiO2 thick films deposited on macroporous reticulated Al2O3 foams with pore size of 10 ppi and 15 ppi were prepared using dip coating from slurries of Aeroxide® P25 nanopowder and precipitated titania. All prepared films have sufficiently good adhesion to the surface of the substrate also in case of strongly cracked films. No measurable release of deposited TiO2 after repeated photocatalytic cycles was observed. The photocatalytic activity was characterized as the rate of mineralization of aqueous phenol solution under irradiation of UVA light by TOC technique. The best activity was obtained with Aeroxide® P25 coated Al2O3 foam with the pore size of 10 ppi, annealed at 600 °C. The optimal annealing temperature for preparation of films from precipitated titania could be determined at 700 °C. Films prepared by sol-gel deposition technique were considerably thinner compared to coatings made of suspensions and their photocatalytic activity was significantly smaller.  相似文献   

6.
Using ascorbic acid as the reducing agent, AgNO3 as the source of Ag, the ultrafine silver powder was prepared by liquid-phase reduction method. The optimal conditions to prepare the ultrafine silver powder were obtained by studying the effects of following factors, such as the selection of dispersant, the doses of dispersant and pH, on the dispersibility of silver powder under other constant conditions. The pure ultrafine silver powder with quasi-spherical shape and mean size of 1.15 μm was synthesized under the optimal conditions of polyvinyl alcohol (PVA) as disperser, PVA/AgNO3 mass ratio of 4:100 and pH 7 while maintaining other conditions exactly in the same circumstances, such as AgNO3 concentration of 0.20 mol L−1, ascorbic acid concentration of 0.15 mol L−1 and reaction temperature of 40 °C. The ultrafine silver powder was characterized by SEM and XRD. And a PVA dispersive mechanism for preparing highly dispersive ultrafine silver powder, proved by the ultraviolet spectra, is that PVA absorbed on the surface of silver particles by coordination bond preventing the silver particles from diffusion and aggregation. In addition, the steric effect may help to reduce aggregation.  相似文献   

7.
A novel ZrC-SiC coating was prepared on carbon/carbon (C/C) composites surface by solid phase infiltration and the ablation properties of the ZrC-SiC coated C/C composites under oxyacetylene flame were studied. The results show that the coating prepared on the condition of optimum process parameters exhibits dense surface and outstanding anti-ablation ability. After ablation for 20 s, the mass ablation rates of the coated C/C composites can be lowered to 2.36 × 10−3 g/s, 37.1% reduction compared with uncoated C/C composites. The oxide layer composed of ZrO2 and SiO2 acts as oxygen diffusion barrier and the evaporation of ZrO2 and SiO2 absorbs a great amount of heat from the flame and reduces the erosive attack on the coating.  相似文献   

8.
A new coating system of under layer for hot dip zinc coating was explored as an effective coating for steel especially for application in relatively high aggressive environments. The influence of different barrier layers formed prior to hot dip galvanization was investigated to optimize high performance protective galvanic coatings. The deposition of ZnO and Ni-P inner layers and characteristics of hotdip zinc coatings were explored in this study. The coating morphology was characterized by scanning electron microscope (SEM) analysis. The hot dip zinc coatings containing under layer showed substantial improvement in their properties such as good adhesion, and high hardness. In addition, a decrease in the thickness of the coating layer and an enhancement of the corrosion resistance were found. Open circuit potential (OCP) of different galvanized layers in different corrosive media viz. 5% NaCl and 0.5 M H2SO4 solutions at 25 ± 1 °C was measured as a function of time. A nobler OCP was exhibited for samples treated with ZnO and Ni than sample of pure Zn; this indicates a dissolution process followed by passivation due to the surface oxide formation. The high negative OCP can be attributed to the better alloying reaction between Zn and Fe and to the sacrificial nature of the top pure zinc layer.  相似文献   

9.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

10.
The silver nanoparticles were prepared on the glassy carbon (GC) electrode, modified with p-iso propyl calix[6]arene, by preconcentration of silver ions in open circuit potential and followed by electrochemical reduction of silver ions. The stepwise fabrication process of Ag nanoparticles was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The prepared Ag nanoparticles were deposited with an average size of 70 nm and a homogeneous distribution on the surface of electrode. The observed results indicated that the presence of calixarene layer on the electrode surface can control the particle size and prevent the agglomeratione and electrochemical deposition is a promising technique for preparation of nanoparticles due to its easy-to-use procedure and low cost of implementation. Cyclic voltammetry experiments showed that Ag nanoparticles had a good catalytic ability for the reduction of hydrogen peroxide (H2O2). The effects of p-isopropyl calix[6]arene concentration, applied potential for reduction of Ag+, number of calixarene layers and pH value on the electrocatalytic ability of Ag nanoparticles were investigated. The present modified electrode exhibited a linear range from 5.0 × 10−5 to 6.5 × 10−3 M and a detection limit 2.7 × 10−5 M of H2O2 (S/N = 3) using amperometric method.  相似文献   

11.
Silver doped indium oxide (In2−x Agx O3−y) thin films have been prepared on glass and silicon substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target of pure indium and silver (80: 20 atomic %. The magnetron power (and hence the metal atom sputter flux) is varied in the range 40-80 W. The energy dispersive analysis of X-ray (EDAX) results show that the silver content in the film decreases with increasing magnetron power. The grain size of these films is of the order of 100 nm. The resistivity of these films is in the range 10−2-10−3 Ω cm. The work function of the silver-indium oxide films (by Kelvin Probe) are in the range: 4.64-4.55 eV. The refractive index of these films (at 632.8 nm) varies in the range: 1.141-1.195. The optical band gap of indium oxide (3.75 eV) shrinks with silver doping. Calculations of the partial ionic charge (by Sanderson's theory) show that silver doping in indium oxide thin films enhance the ionicity.  相似文献   

12.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

13.
YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10−5 cm4 N−1 s−1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.  相似文献   

14.
In this work, the plasma sprayed wollastonite coating was soaked in 5 wt% AgNO3 solution at room temperature to load silver for improving its antibacterial effect. The surface characteristics of the silver-loaded coating were investigated by SEM, EDS and XRD. The release rate of silver from the coating was measured by ICP-OES in deionized water. The osteotoxicity of the silver-loaded coating was evaluated by in vitro cell culturing test. The antibacterial activity against Staphylococcus aureus was examined by Zone of Inhibition test. The results showed that the loaded silver reacted with the wollastonite coating to form silver silicate, which ensured a sustained release of silver in deionized water for as long as 50 days. The antibacterial activity and cell culturing tests confirmed that the silver released from silver-loaded wollastonite coating had strong inhibition against the growth of S. aureus, while they did not exhibit any adverse effects on the osteoblasts proliferation.  相似文献   

15.
A polyol synthesis of silver nanoparticles in the presence of ultrasonic irradiation was compared with other configurations (at ambient temperature, 120 °C, and 120 °C with injected solutions) in the absence of ultrasonic irradiation in order to obtain systematic results for morphology and size distribution. For applying ultrasonic irradiation, rather fine and uniform spherical silver particles (21 ± 3.7 nm) were obtained in a simple (at ambient temperature without mechanical stirring) and fast (within 4 min, 3.61 × 10−3 mol min−1) manner than other cases (at ambient temperature (for 8 h, 0.03 × 10−3 mol min−1): 86 ± 16.8 nm, 120 °C (for 12 min, 1.16 × 10−3 mol min−1): 64 ± 14.9 nm, and 120 °C with injected solutions (during 12 min): 35 ± 6.8 nm; all other cases contained anisotropic shaped particles). Even though the temperature of polyol reaction reached only at 80 °C (<120 °C) in the presence of ultrasonic irradiation, a uniform mixing (i.e. enhanced collision between silver particle and surrounding components) by ultrasonic irradiation might induce a better formation kinetics and morphological uniformity.  相似文献   

16.
The growth process of silver thin films deposited by pulsed laser ablation in a controlled inert gas atmosphere was investigated. A pure silver target was ablated in Ar atmosphere, at pressures ranging between 10 and 100 Pa, higher than usually adopted for thin film deposition, at different numbers of laser shots. All of the other experimental conditions such as the laser (KrF, wavelength 248 nm), the fluence of 2.0 J cm−2, the target to substrate distance of 35 mm, and the temperature (295 K) of the substrates were kept fixed. The morphological properties of the films were investigated by transmission and scanning electron microscopies (TEM, SEM). Film formation results from coalescence on the substrate of near-spherical silver clusters landing as isolated particles with size in the few nanometers range. From a visual inspection of TEM pictures of the films deposited under different conditions, well-separated stages of film growth are identified.  相似文献   

17.
Silver nanoparticles have been formed on the surface of lead crystal glass by means of (i) ion-exchange of alkaline ions from the glass by Ag+ ions from a molten salts bath, and (ii) silica based sol-gel coatings containing silver. All experimental variables concerning both ion-exchange process and sol-gel coatings application were combined and studied as main parameters governing the reduction of Ag+ ions to Ag0 atoms and further aggregation to form nanosized colloids. The content of thermoreducing agents (arsenic or antimony oxides) in the lead crystal glass was essential to favour the reduction of silver ions to form nanoparticles. Optimal experimental conditions to be used for the obtaining of surface silver nanoparticles were determined. TEM was used as the principal characterisation technique for direct observation of the nanoparticles generated. The size of silver colloids varied in the 20-300 nm range for ion-exchanged samples and in the 10-80 nm range for sol-gel coated samples.  相似文献   

18.
We alternately deposited negatively charged Ag-(3-mercaptopropionic acid) (Ag-MPA) sol and positively charged poly-(diallyldimethylammonium) (PDDA) on gold substrate modified with 4-aminothiophenol (4-ATP), through electrostatic layer-by-layer (LBL) self-assembly. We characterized the prepared three-dimensional Ag/PDDA multilayer films by surface plasmon resonance (SPR) and atomic force microscope (AFM). The thickness of each film in the multilayer films, the deposition effect of Ag nanoparticles, and the processing of DNA adsorption are characterized by SPR. AFM characterization shows that DNA/3(PDDA/Ag)/4-ATP composite is uniformly and firmly distributed on the surface of gold films. Compared with other sensors, gentamicin could be highly sensitively measured by DNA/3(PDDA/Ag)/4-ATP/Au sensor. There is a good linear relationship in the concentration range of 5 × 10−8 to 1 × 10−4 mol/L. The linear equation is found to be ΔθSPR = 1.3521 × 10−5c + 0.08641 (the correlation coefficient is 0.9983) with detection limit of 1 × 10−9 mol/L. Since such LBL assembly film is simple to prepare, the work described here provides an effective method for studying small molecule drugs on SPR.  相似文献   

19.
The microstructural morphological changes in laser irradiated targets are investigated. Nd:YAG laser (1064 nm, ∼12 ns nominal, 1.1 MW) is used to irradiate 4 N pure (99.99%) fine polished and annealed silver samples in ambient air and under vacuum ∼10−6 Torr. The laser spot size and power density at tight focus are 12 μm and 3×1011 W/cm2, respectively. SEM micrographs and X-ray diffractograms of the exposed and unexposed targets reveal the surface texture and structural changes, respectively. Amongst the ablation mechanisms involved, exfoliation and hydrodynamic sputtering are found to be dominant. Surface modifications appear in the form of craters and ripples formation. Heat is conducted non-uniformly through narrow channels at the surface. Thermal stresses induced by the laser do not disturb inter planar distance of the target. On the other hand irradiation causes significant variations in grain size and diffracted X-rays intensities.  相似文献   

20.
The properties of carbon nanotube (CNT) field emission cathodes fabricated by a dip coating method with trivalent chromium conversion coated substrates are studied. Two kinds of substrates with different morphologies, one with a rough crackled surface and the other with a smooth surface, were used for making the CNT cathodes, and their I-V curves and emission patterns were evaluated. The results show that, as compared to the smooth substrate surface, the rough surface with self-assembled sub-micro-cracks on the substrate can dramatically enhance the uniformity of the emission pattern and the emission efficiency. The cathode fabricated with the crackled substrate shows good field emission properties such as high brightness, good uniformity, a low turn-on field (0.86 V/μm) and a high current density of 10 mA/cm2 at 2.5 V/μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号