首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a simple etching route for the fabrication of zinc oxalate nanowires, which can be easily converted to zinc oxide nanowires by a simple decomposition process. The zinc oxalate nanowires can be obtained in restricted conditions, for example, when a zinc foil is immersed in ethanolic or propanolic oxalic acid. Interestingly, the nanowires are not obtained in aqueous, methanolic or butanolic oxalic acid. The solubility of zinc oxalate in the solvents and position of favorable precipitation are primarily responsible for determining the morphology of zinc oxalate.  相似文献   

2.
Shape evolution of ZnO crystals from twinned disks to single spindles was studied through solvothermal synthesis in binary solvents N,N-diethylformamide (DEF) and methanol (MeOH). The MeOH content in DEF had large influence on the morphology of the obtained ZnO crystals. In MeOH-free DEF, well-shaped ZnO twinned disks with perfect mirror symmetry could be formed through the assembly of ZnO46−–julolidinium–ZnO46− growth units on the (0 0 0 1) growth interfaces. For small amounts of MeOH (MeOH/DEF=0.04), elongated twinned disks were formed since the growth along the polar c-axis was enhanced. With increasing MeOH content (MeOH/DEF=0.1), twinned rods with reduced mirror symmetry were formed. When a large amount of MeOH was added to DEF (MeOH/DEF=0.5), single spindles rather than twinned disks or twinned rods were obtained. A similar shape evolution of zinc oxide was observed in binary solvents DEF and N,N-dimethylformamide (DMF), suggesting that the growth of ZnO crystals with tuneable shape and size can be controlled by the composition of the binary solvent mixture.  相似文献   

3.
Micro scale zinc oxide-polyvinyl alcohol (ZnO–PVA) composite has been synthesized by ultrasound irradiation. The properties of the as-prepared ZnO–PVA composite material are characterized by X-ray diffraction (XRD), thermo gravimetric analysis (TGA), transmission electron microscopy (TEM), and diffuse reflection spectroscopy (DRS). A band gap of 3.25 eV is estimated from DRS measurements. The controlled crystal growth of zinc oxide has been studied by using the as-prepared micro scale ZnO–PVA composite as seeds for the crystal growth of ZnO.  相似文献   

4.
Large optical-quality Yb:YAl3(BO3)4(Yb:YAB) crystals have been grown by the flux method. The thermal properties of Yb:YAB crystal were measured for the first time. The thermal properties of Yb:YAB crystal with different Yb3+ ion concentrations are also reported. The results show that the ytterbium concentration influences the properties of Yb:YAB crystal. The specific heat decreases with the increase of Yb3+ ion concentrations in the experiment range. Apparently, the thermal expansion coefficient increases along the c-direction with the increase of Yb3+ ion concentrations, while it changes slightly along the a-direction. The output laser in 1120–1140 nm ranges has been demonstrated pumped by InGaAs laser. The slope efficiency is 3.8%. The self-frequency-doubling output power of 1 mW is achieved.  相似文献   

5.
Fibrous barium carbonate (BaCO3/witherite) crystals 50–100 nm in diameter and several microns in length were grown on calcium carbonate (CaCO3) seeds at temperatures as low as 4 °C. The BaCO3 fibers were deposited onto calcite rhombs or CaCO3 films using the polymer-induced liquid-precursor (PILP) process, which was induced with the sodium salt of polyacrylic acid (PAA). The structure and morphology of the resultant fibers were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and polarized light microscopy (PLM). Fibers were successfully grown on calcite seeds of various morphologies, with a range of barium concentrations, and PAA molecular weight and concentration. Two categories of fibers were grown: straight and twisted. Both types of fibers displayed single-crystalline SAED diffraction patterns, but after examining high-resolution TEM lattice images, it was revealed that the fibers were in fact made up of nanocrystalline domains. We postulate that these nanocrystalline domains are well aligned due to a singular nucleation event (i.e., each fiber propagates from a single nucleation event on the seed crystal) with the nanocrystalline domains resulting from stresses caused by dehydration during crystallization of the highly hydrated precursor phase. These BaCO3 fibers grown on calcite substrates further illustrate the robustness and non-specificity of the PILP process.  相似文献   

6.
The growth and dissolution rates of borax decahydrate have been measured as a function of supersaturation for various particle sizes at different temperature ranges of 13 and 50 °C in a laboratory-scale fluidized bed crystallizer. The values of mass transfer coefficient, K, reaction rate constant, kr and reaction rate order, r were determined. The relative importances of diffusion and integration resistance were described by new terms named integration and diffusion concentration fraction. It was found that the overall growth rate of borax decahydrate is mainly controlled by integration (reaction) steps. It was also estimated that the dissolution region of borax decahydrate, apart from other materials, is controlled by diffusion and surface reaction. Increasing the temperature and particle size cause an increase in the values of kinetic parameters (Kg, kr and K). The activation energies of overall, reaction and mass transfer steps were determined as 18.07, 18.79 and 8.26 kJmol−1, respectively.  相似文献   

7.
Growth rate of polycrystalline disc of borax compressed at different pressure and rotated at various speed has been measured in a rotating disc crystallizer under well-defined conditions of supersaturation. It was found that the mass transfer coefficient, K, increased while overall growth rate constant, Kg, and surface reaction constant, kr, decreased with increasing smoothness of the disc. It was also determined that kinetic parameters (kr,r,K,g) of crystal growth rate of borax decreased with increasing rotating speed of the polycrystalline disc. The effectiveness factor was calculated from the growth rate data to evaluate the relative magnitude of the steps in series bulk diffusion through the mass transfer boundary layer and the surface integration. At low rotating speed of disc, the crystal growth rate of borax is mainly controlled by integration. However, both diffusion and integration steps affect the growth rate of borax at higher rotating speed of polycrystalline disc.  相似文献   

8.
A simple growth technique capable of growing a variety of zinc oxide (ZnO) nanostructures with record growth rates of 25 μm/s is demonstrated. Visible lengths of ZnO nanowires, nanotubes, comb-like and pencil-like nanostructures could be grown by employing a focused CO2 laser-assisted heating of a sintered ZnO rod in ambient air, in few seconds. For the first time, the growth process of nanowires was videographed, in-situ, on an optical microscope. It showed that ZnO was evaporated and presumably decomposed into Zn and oxygen by laser heating, reforming ZnO nanostructures at places with suitable growth temperatures. Analysis on the representative nanowires shows a rectangular cross-section, with a [0 0 0 1] growth direction. With CO2 laser heating replacing furnace heating used conventionally, and using different reactants and forming gases, this method could be easily adopted for other semiconducting inorganic nanostructures in addition to ZnO.  相似文献   

9.
Crystals of cubic zinc sulfide with different isotopic compositions have been grown by iodine vapor transport for basic research purposes (vibrational, electronic, and thermodynamic properties). The synthesis reaction in sulfur vapor was found to be controlled by solid-state diffusion of zinc atoms through a ZnS passivation layer. Crystals up to 5 mm in length were grown from small amounts of source material. The presence of argon reduced the nucleation density and favored the formation of facets.  相似文献   

10.
Growth rate measurements of β-cyclodextrin in water were performed both ways. Firstly, experiments were conducted with single monocrystals located in a supersaturation-controlled flow cell. Diffusional limitations and perturbations due to a competition between surface secondary nucleation and growth at high level of supersaturation have been put in evidence. The evolution of the growth rate with supersaturation has been modelled with a BCF law, assuming a screw dislocation mechanism. Secondly seeded cooling batch trials have been carried on in a well-mixed suspension crystallizer in order to assess the growth rate of the seeds. Refractometry was used as an in situ sensor for measuring the evolution of the concentration of the solute. Measurements of the crystals size distribution of the seeds and of the final crystals are performed off line with laser diffraction technique. A kinetic law with three parameters allows a consistent assessment of the growth of the seeds. The comparison of the two sets of data shows that overall growth rate of the seed is partially limited by diffusion. Nevertheless, the estimation of a surface integration growth kinetic coefficient from batch trials is rather difficult. The theoretical framework of nucleation models developed by Mersmann et al. (Crystallization Technology Handbook, second ed., Marcel Dekker, New York, 2001, pp. 45–80 and 81–144) coupled with the estimated growth kinetics can therefore be used to better monitor the seeding process during batch crystallization operations so as to favor the growth of the seed crystals.  相似文献   

11.
Hydroxyapatite is one of the most important bone substitute biomaterials. Here, it has been successfully overgrown on biogenic seed crystals at ambient conditions. Single crystals of calcite from Atrina rigida, Paracentrotus lividus and Heterocentrotus mammillatus have been soaked in phosphate solution with different concentrations and pHs for 2 months. X-ray powder diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy have been used to characterize soaking precipitates. The results show that the conversion of calcite to hydroxyapatite occurs to an extent which depends on composition and morphology of seed crystals, and starting concentration and pH of phosphate solutions. In the same experimental conditions, synthetic calcite single crystals did not convert to hydroxyapatite. The morphological observations suggest for hydroxyapatite formation, a mechanism that involves a superficial dissolution of calcite and a subsequently overgrowth of hydroxyapatite. Moreover, the final architectural assembly of the hydroxyapatite crystals resembles the shape of the starting biogenic seed crystals.  相似文献   

12.
The inhibitory growth mechanism controlling the growth of ice crystals due to the presence of saccharides, as in plant cells, was experimentally studied at low temperature. As a result, it was found that the growth rate of ice crystals in saccharide solutions depended on the type and concentration of the saccharides. The experimental facts can be explained by the concept that giant hydrated clusters of saccharides create the framework that causes a resistance to the volume diffusion of water molecules.  相似文献   

13.
This paper presents a rapid method for preparation of copper metal nanoparticles by reducing CuSO4·5H2O with NaH2PO2·H2O in ethylene glycol under microwave irradiation. The influences of the reaction parameters, such as the concentrations of reducing agent and protective polymer time of microwave irradiation, on the size and agglomeration of copper nanoparticles were investigated by X-ray powder diffraction and transmission electron microscope. Well-dispersed copper nanoparticles with diameter of about 10 nm were obtained. The use of microwave irradiation accelerated the reaction rate and benefited the dispersion and the particle size distribution of the nanoparticles.  相似文献   

14.
Water soluble matrix (WSM) was extracted from pearls originated from Hyriopsis cumingii in Zhuji, Zhejiang province, China. WSM was regarded as an additive in mineralization experiments in order to study the effect of WSM on CaCO3 crystallization. The experiments were carried out at different pH and temperatures by gas diffusion method and solution titration method, respectively. Scanning electron microscopy (SEM) and Raman spectroscopy (Raman) were used as powerful techniques to analyze the co-effect of pH value, temperature and WSM on crystal growth of CaCO3. The results showed that WSM could induce aragonite at different pH values of mineralization solution, and the pH value had remarkable influence on morphology of calcite rather than aragonite due to distinct supersaturation and ionic strength related to various pH values. At different solution temperatures, WSM had little effect on crystal growth of calcium carbonate while the solution temperature had notable effect on polymorph and morphology of CaCO3 crystals. This work can provide some basic information for the polymorph and morphology control of calcium carbonate.  相似文献   

15.
Highly ordered hexagonal prism microstructures of copper sulfide (CuS) by assembling nano-flakes have been synthesized with high yield via a facile one-step route. We synthesized CuS microstructures using low cost beginning materials CuSO4·5H2O and Na2S2O3·5H2O under lower reaction temperature (60 °C). Hexamethylinetetramin (C6H12N4, HMT) was introduced into the reaction system as a capped agent. The influence of reaction time and capping agent (HMT) on the final structure of products was studied systematically. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopes (EDS), and transmission electron microscopy (TEM). The possible mechanism for the formation of the interesting highly ordered hexagonal prism microstructures CuS was also proposed.  相似文献   

16.
Sonochemical synthesis of taper shaped HgSe nanorods in polyol solvent   总被引:2,自引:0,他引:2  
A new shape nanosized HgSe was synthesized in the presence of ethylene glycol, which was found to act as both reducing agent and be favorable to the formation of tapered HgSe nanorods. It was also observed that the ultrasonic power played an important role for the shape of the final products. X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the HgSe nanorods. Other polyol solvents, such as diethylene glycol and polyethylene glycol 200, were also used to the preparation of HgSe nanoparticles. The possible mechanism of the formation of taper shaped HgSe nanorods was discussed.  相似文献   

17.
The cracking and stoichiometric deviations frequently observed in crystals of mixed oxides have generally been perceived to be unrelated phenomena. The present study pertains to the cracking in Czochralski grown crystals of three different materials, viz. CdWO4, PbWO4 and ZnWO4. The results obtained on the single-crystal growth as well as on the thermal stability of melts of these materials and of their constituent oxides demonstrate, for the first time, that stoichiometric deviations manifest as cracks in the crystals. An important outcome of this investigation is that materials exhibiting a small degree of super-cooling with stable melting and solidification temperatures should be less prone to cracking.  相似文献   

18.
Thermogravimetric analysis (TGA) and microstructural observations were carried to investigate the nitridation mechanism of β-Ga2O3 powder to GaN under an NH3/Ar atmosphere. Non-isothermal TGA showed that nitridation of β-Ga2O3 starts at ∼650 °C, followed by decomposition of GaN at ∼1100 °C. Isothermal TGA showed that nitridation follows linear kinetics in the temperature range 800–1000 °C. At an early stage of nitridation, small GaN particles (∼5 nm) are deposited on the β-Ga2O3 crystal surface and they increase with time. We proposed a mechanism for the nitridation of Ga2O3 by NH3 whereby nitridation of β-Ga2O3 proceeds via the intermediate vapor species Ga2O(g).  相似文献   

19.
Using the method of heat field symmetry control [5], large high quality LBO crystals of more than 1.3 kg have been grown. In accordance with the so-called Curie principle, rhombic LBO crystals were grown in the heat field of the same symmetry. Elements of excellent optical homogeneity with diameters up to 50 mm were used for frequency doubling of high energy 1053 nm laser beam. Second-harmonic energies up to 115 J [1] were produced and conversion efficiencies up to 90% were measured.  相似文献   

20.
The tin sulfides compounds SnS and SnS2 nanoflakes were prepared by the microwave-assisted polyol synthetic method. The as-prepared nanoscale flakes were characterized by X-ray powder diffraction, transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy and Raman spectra. The influences of solvents and microwave irradiation on the formation of products have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号