首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleation of AlN on SiC substrates by seeded sublimation growth   总被引:1,自引:0,他引:1  
The nucleation of aluminum nitride (AlN) on silicon carbide (SiC) seed by sublimation growth was investigated. Silicon-face, 8 off-axis 4H-SiC (0 0 0 1) and on-axis 6H-SiC (0 0 0 1) were employed as seeds. Initial growth for 15 min and extended growth for 2 h suggested that 1850 °C was the optimum temperature of AlN crystal growth: on an 8 off-axis substrate, AlN grew laterally forming a continuous layer with regular “step” features; on the on-axis substrate, AlN grew vertically as well as laterally, generating an epilayer with hexagonal sub-grains of different sizes. The layer's c-lattice constant was larger than pure AlN, which was caused by the compression of the AlN film and impurities (Si, C) incorporation. Polarity sensitive and defect selective etchings were performed to examine the surface polarity and dislocation density. All the samples had an Al-polar surface and no N-polar inversion domains were observed. Threading dislocations were present regardless of the substrate misorientation. Basal plane dislocations (BPDs) were revealed only on the AlN films on the 8 off-axis substrates. The total dislocation density was in the order of when the film was 20– thick.  相似文献   

2.
Several key improvements in crystal quality of bulk GaN grown by the ammonothermal method are presented. Full width at half maximum of (0 0 2) X-ray rocking curve was reduced to 53 and 62 arcsec for Ga-side and N-side, respectively. Transparent bulk GaN crystal was also demonstrated. Oxygen and sodium concentrations were reduced to mid-1018 and mid-1015 cm−3, respectively. We are currently searching for a growth condition that produces transparent bulk GaN with high structural quality and low impurities. Small-sized, semi-transparent GaN wafers were fabricated by slicing the grown bulk GaN crystals, which demonstrate the high feasibility of ammonothermal growth for production of GaN wafers.  相似文献   

3.
Aluminum nitride single crystal fabricated by a novel growth technique “pyrolytic transportation method”, which is advantageous for industrial process because of using α-Al2O3 as a source material instead of aluminum nitride, was characterized. This growth technique shows high growth rate up to 1.6 mm/h. High crystalline quality was indicated by X-ray topogragh and X-ray rocking curve. Full width at half maximum of (0 0 0 2) and (1 0 −1 0) were excellent values of 90 and 148 arcsec, respectively. Homoepitaxial overgrowth by hydride vapor phase epitaxy was successfully conducted. No dislocation was observed at the interface between the substrate and overgrowth layer by transmission electron microscopy.  相似文献   

4.
A novel crystal growth method has been established for the growth of single crystal with selective orientation at room temperature. Using volatile solvent, the saturated solution containing the material to be crystallized was taken in an ampoule and allowed to crystallize by slow solvent evaporation assisted with a ring heater. The orientation of the growing crystal was imposed by means of a seed fixed at the bottom of the ampoule. By selecting a suitable ring heater voltage and by controlling the ring heater voltage, nucleation and the growth rate of the crystal were controlled more effectively. By employing this novel method, benzophenone single crystal ingots of diameters 10 and 20 mm and length more than 50 mm were successfully grown using xylene as solvent. The ease in scaling up of diameter from 10 to 20 mm shows the vital advantage of this technique. It was possible to achieve solute–crystal conversion efficiency of 100 percent. The grown benzophenone crystal was characterized by FTIR, TG and DTA, powder X-ray diffraction, X-ray rocking curve, optical transmission study and powder SHG measurement. The results show that the crystal quality is at least as good as the quality of the crystal grown by other known methods. Also, microbial growth was naturally avoided in this method, as the fresh solution is constantly made available for the growing crystal.  相似文献   

5.
A fully coupled compressible multi-phase flow solver was developed to effectively design a large furnace for producing large-size SiC crystals. Compressible effect, convection and buoyancy effects, flow coupling between argon gas and species, and the Stefan effect are included. A small and experimental furnace is used to validate the solver. First, the essentiality of 2D flow calculation and the significance of incorporating buoyancy effect and gas convection, the Stefan effect, and flow interaction between argon gas and species were investigated by numerical results. Then the effects of argon gas on deposition rate, growth rate, graphitization on the powder source, and supersaturation and stoichiometry on the seed were analyzed. Finally, the advantages of an extra chamber design were explained, and improvement of growth rate was validated by the present solver.  相似文献   

6.
Good quality, large single crystals of CdSe were grown by the modified growth method (i.e., vertical unseeded vapor phase growth with multi-step purification of the starting material in the same quartz ampoule without any manual transfer between the steps). Lower temperature gradients (8–9°C/cm) at the growth interface were used for the crystal growth. As-grown CdSe crystals was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive analyzer of X-rays, high-resistance instrument measurement, and etch-pit observation. It is found that there are two cleavage faces of (1 0 0) and (1 1 0) orientations on the crystal, the resistivity is about 108 Ω cm, and the density of etch pits is about 103–4/cm2. The crystal was cut into wafers and was fabricated into detectors. The detectors were tested using an 241Am radiation source. γ-ray spectra at 59.5 keV were obtained. The results demonstrated that the quality of the as-grown crystals was good. The crystals were useful for fabrication of room-temperature-operating nuclear radiation detectors. Therefore, the modified growth technique is a promising, convenient, new method for the growth of high-quality CdSe single crystals.  相似文献   

7.
The dependency of LPE growth rate and dislocation density on supersaturation in the growth of GaN single crystals in the Na flux was investigated. When the growth rate was low during the growth of GaN at a small value of supersaturation, the dislocation density was much lower compared with that of a substrate grown by the Metal Organic Chemical Vapor Deposition method (MOCVD). In contrast, when the growth rate of GaN was high at a large value of supersaturation, the crystal was hopper including a large number of dislocations. The relationship between the growth conditions and the crystal color in GaN single crystals grown in Na flux was also investigated. When at 800 °C the nitrogen concentration in Na–Ga melt was low, the grown crystals were always tinted black. When the nitrogen concentration at 850 °C was high, transparent crystals could be grown.  相似文献   

8.
Near atmospheric pressure solution growth is one of the many developing methods for growing bulk GaN from solution. Apart from other approaches, this method holds certain advantages, such as relatively low growth pressure and temperature, and the ability to grow high quality GaN crystals with different orientations by varying the solvent composition. GaN whiskers of millimeter scale size with exceptional mechanical and optical properties were grown from solution. Crystals of near isotropic shape were also grown from solution by manipulating additives in the basic solvent.  相似文献   

9.
The structural and optical properties of self-nucleated crystals grown by a near atmospheric pressure solution growth method are presented. High-resolution room temperature Raman scattering studies demonstrate that stress-free crystals with low free-electron background have been produced. Low and room temperature photoluminescence experiments confirm the presence of shallow donors and an unknown shallow acceptor. Large relative intensity variations of the emission bands assigned to recombination process involving donors and acceptor, resulting from significant changes in the incorporation and/or activation of defect associated with each recombination channel, reflect major changes in the intrinsic material properties.  相似文献   

10.
Gold single microcrystals have been fabricated by electrochemical growth in a silica gel. Structural characterization of the single crystals by backscatter electron diffraction showed a preferred orientation of Au (1 1 1) and a minor orientation of Au (1 0 0). In addition, the influence of additives on the nucleation and growth of gold microcrystals has been studied. It was found that the inclusion of chemical additives in the growth solutions altered the characteristics of the gold crystals. Possible mechanisms for nucleation and growth of these crystals are discussed.  相似文献   

11.
A new SiC growth system using the dual-directional sublimation method was investigated in this study. Induction heating and thermal conditions were computed and analyzed by using a global simulation model, and then the values of growth rate and shear stress in a growing crystal were calculated and compared with those in a conventional system. The results showed that the growth rate of SiC single crystals can be increased by twofold by using the dual-directional sublimation method with little increase in electrical power consumption and that thermal stresses can be reduced due to no constraint of the crucible lid and low temperature gradient in crystals.  相似文献   

12.
The sublimation–recombination crystal growth of bulk yttrium nitride crystals is reported. The YN source material was prepared by reacting yttrium metal with nitrogen at 1200 °C and 800 Torr total pressure. Crystals were produced by subliming this YN from the source zone, and recondensing it from the vapor as crystals at a lower temperature (by 50 °C). Crystals were grown from 2000 to 2100 °C and with a nitrogen pressure from 125 to 960 Torr. The highest rate was 9.64×10−5 mol/h (9.92 mg/h). The YN sublimation rate activation energy was 467.1±21.7 kJ/mol. Individual crystals up to 200 μm in dimension were prepared. X-ray diffraction confirmed that the crystals were rock salt YN, with a lattice constant of 4.88 Å. The YN crystals were unstable in air; they spontaneously converted to yttria (Y2O3) in 2–4 h. A small fraction of cubic yttria was detected in the XRD of a sample exposed to air for a limited time, while non-cubic yttria was detected in the Raman spectra for a sample exposed to air for more than 1 h.  相似文献   

13.
The growth of AlN crystals by PVT method was investigated using TaC crucible in the temperature range of 2250‐2350 °C. AlN boules with 30 mm in diameter were successfully grown on the crucible lid by self‐seeded growth. The AlN boules consist of the spontaneously nucleated AlN single crystal grains with the {1010} natural crystalline face. The fast growth rate of more than 1 mm/h was achieved. AlN crystals grown on (11 0)‐, (10 0)‐, and (0001)‐face AlN seeds were investigated. Different experimental phenomena have been observed under particular condition. The crystal grown on (11 0)‐face seed has different natural crystalline face from the seed. For the crystal grown on (10 0) or (0001) seed, the crystal natural crystalline face is same as the crystallographic orientation of the seed. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We have been developing a zone growth method for an InxGa1−xAs single crystal with a uniform InAs composition, using an InGaAs source, InGaAs melt and InGaAs seed charged in a crucible. This time, we modified the zone growth method to increase the length of an InGaAs zone crystal. A gap created between the wall around the InGaAs source and the inner wall of the crucible effectively prevents the interruption in normal zone growth because it changes the directions of heat current in the source. In addition, we found that it is very important for single crystal growth that no rotation of the crucible takes place during zone growth, because the degree of mixing caused by melt convection is reduced. The zone growth region of the obtained InGaAs crystal is almost exclusively of single-crystal-type, and it is about 26 mm long, which is 1.5 times the region length of the zone single crystal reported previously. We believe that a longer growth period could have further increased the length of our zone crystal, because some of the source remained. The InAs composition (x) of the zone crystal is greater than 0.3, and the crystal diameter is 15 mm.  相似文献   

15.
Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50–200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H2 and NH3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×108 cm−2.  相似文献   

16.
Thermogravimetric analysis (TGA) and microstructural observations were carried to investigate the nitridation mechanism of β-Ga2O3 powder to GaN under an NH3/Ar atmosphere. Non-isothermal TGA showed that nitridation of β-Ga2O3 starts at ∼650 °C, followed by decomposition of GaN at ∼1100 °C. Isothermal TGA showed that nitridation follows linear kinetics in the temperature range 800–1000 °C. At an early stage of nitridation, small GaN particles (∼5 nm) are deposited on the β-Ga2O3 crystal surface and they increase with time. We proposed a mechanism for the nitridation of Ga2O3 by NH3 whereby nitridation of β-Ga2O3 proceeds via the intermediate vapor species Ga2O(g).  相似文献   

17.
Microdefects such as dislocations and macrocracking should be controlled during the crystal growth process to obtain high-quality bulk single crystals. Solid mechanics and material strength studies on the single crystals are of importance to solve the problems related to the generation and multiplication of dislocations and the cracking of single crystals. The present paper reviews such research activities that comprise the thermal stress analysis during crystal growth process, the dislocation density estimation during crystal growth process, and the cracking of single crystal due to thermal stress.  相似文献   

18.
Potassium hydrogen malate monohydrate (PHMM), a semi-organic nonlinear optical material, has been synthesized and single crystals were grown from aqueous solution. Single crystals of PHMM have been grown by slow evaporation of solvent at room temperature up to dimensions of 22 mm×16 mm×14 mm. Single-crystal X-ray diffraction study on grown crystals shows that they belong to monoclinic system and non-centrosymmetry spacegroup Cc. The structural perfection of the grown crystals has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. Fourier transform infrared (FTIR) spectroscopic study was performed for the identification of different modes of functional groups present in the compound. The UV–Vis transmission spectrum has been recorded in the range 200–1100 nm. The thermal stability of the compound has been determined by TG-DTA curves. The dielectric studies were performed. From the microhardness measurements, Vicker's hardness number (Hv), Stiffness constant (C11), fracture toughness (kc), Brittle index (Bi) and yield strength (σy) have been calculated. The Young's modulus was calculated using the Knoop hardness measurement. The SHG relative efficiency of PHMM crystal was found to be 1.2 times higher than that of KDP.  相似文献   

19.
Epitaxial AlN films have been grown on SiC substrate by molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE) using radio frequency (RF) plasma-excited nitrogen. In the RF-MBE growth, the growth rates have been found to be almost constant and the crystal quality improved with increasing the substrate temperature up to 850°C. Further increases of substrate temperature decreased the growth rate and degraded the crystal quality. Using the optimum substrate temperature of 850°C and optimizing the shutter open time, smooth AlN films with atomic force microscope roughness as low as 0.2 nm have been grown by RF-MEE growth.  相似文献   

20.
Study of the ZnO crystal growth by vapour transport methods   总被引:5,自引:0,他引:5  
The crystal growth of ZnO by vapour transport is classically made with the assistance of additional species that produce a gaseous mixture, the role of which remains often uncertain in the transport and growth process. Initially, in order to study the mass transport process, a numerical simulation is made to analyse which are the requirements to have an effective transport. As the pressure of each gaseous species is generally unknown, the numerical study has been performed for different total pressures. It is found that, if congruent and equilibrium conditions are assumed at the sublimation and crystallisation interfaces, effective growth conditions can only be attained for a narrow range of total pressures. Nevertheless, it is well known that ZnO growth by vapour transport is possible for a wide range of pressures of gaseous species. As a consequence, partial pressures higher than the equilibrium ones must be present in order to justify the experimental results. We suggest that the thermal decomposition of ZnO is given by an activated process. The analysis of different mechanisms that could justify the activated decomposition, in accord with a systematic set of growth experiments, suggests that some additional species in the growth of ZnO by vapour transport promote the generation of an additional Zn pressure. This zinc pressure would act autocatalytically inducing O2 and Zn partial pressures higher than the equilibrium ones and promoting thermal decomposition. The above-cited set of experimental growth experiences, that include the presence of C, Zn, Fe, Cu and H2, will be analysed and interpreted according to this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号