首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV.  相似文献   

2.
T. Serin  N. Serin  H. Sar?  O. Pakma 《Journal of Non》2006,352(3):209-215
This study investigated the effect of the substrate temperature on the structural, optical, morphological, and electrical properties of undoped SnO2 films prepared by a spray deposition method. The films were deposited at various substrate temperatures ranging from 300-500 °C in steps of 50 °C and characterized by different optical and structural techniques. X-ray diffraction studies showed that the crystallite size and preferential growth directions of the films were dependent on the substrate temperature. These studies also indicated that the films were amorphous at 300 °C and polycrystalline at the other substrate temperatures used. Infrared and visible spectroscopic studies revealed that a strong vibration band, characteristic of the SnO2 stretching mode, was present around 630 cm−1 and that the optical transmittance in the visible region varied over the range 75-95% with substrate temperature, respectively. The films deposited at 400 °C exhibited the highest electrical conductivity property.  相似文献   

3.
Gd2O3-doped CeO2 (Gd0.1Ce0.9O1.95, GDC) thin films were synthesized on (1 0 0) Si single crystal substrates by a reactive radio frequency magnetron sputtering technique. Structures and surface morphologies were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and one-dimensional power spectral density (1DPSD) analysis. The XRD patterns indicated that, in the temperature range of 200–700 °C, f.c.c. structured GDC thin films were formed with growth orientations varying with temperature—random growth at 200 °C, (2 2 0) textures at 300–600 °C and (1 1 1) texture at 700 °C. GDC film synthesized at 200 °C had the smoothest surface with roughness of Rrms=0.973 nm. Its 1DPSD plot was characterized with a constant part at the low frequencies and a part at the high frequencies that could be fitted by the f−2.4 power law decay. Such surface feature and scaling behavior were probably caused by the high deposition rate and random growth in the GDC film at this temperature. At higher temperatures (300–700 °C), however, an intermediate frequency slope (−γ2≈−2) appeared in the 1DPSD plots between the low frequency constant part and the high frequency part fitted by f−4 power law decay, which indicated a roughing mechanism dominated by crystallographic orientation growth that caused much rougher surfaces in GDC films (Rrms>4 nm).  相似文献   

4.
Growth of tin oxide thin films using molecular beam epitaxy in a pyrolyzed nitrogen dioxide atmosphere on a titanium dioxide (1 1 0) substrate was investigated using X-ray photoelectron spectroscopy (XPS), electron diffraction, and atomic force microscopy (AFM). Properties of deposited films were studied for their dependence on substrate temperature and oxidation gas pressure. Analyses using XPS data revealed that tin atoms were fully oxidized to Sn4+ and SnO2 films were grown epitaxially in deposition conditions of substrate temperatures of 627 K or higher and NO2 pressure greater than 3×10−3 Pa. At a substrate temperature of 773 K, a smooth surface with atomic steps was visible in the SnO2 films, but above or below this temperature, fine grains with crystal facets or porous structures appeared. At pressures of 8×10−4 to 3×10−4 Pa, the randomly oriented SnO phase was dominantly grown. Further decreasing the pressure, the Sn metal phase, which was epitaxially crystallized at less than 500 K, was also grown.  相似文献   

5.
Single crystalline ZnO film was grown on (1 1 1) Si substrate through employing an oxidized CrN buffer layer by plasma-assisted molecular beam epitaxy. Single crystalline characteristics were confirmed from in-situ reflection high energy electron diffraction, X-ray pole figure measurement, and transmission electron diffraction pattern, consistently. Epitaxial relationship between ZnO film and Si substrate is determined to be (0 0 0 1)ZnO‖(1 1 1)Si and [1 1 2¯ 0]ZnO‖[0 1 1]Si. Full-width at half-maximums (FWHMs) of (0 0 0 2) and (1 0 1¯ 1) X-ray rocking curves (XRCs) were 1.379° and 3.634°, respectively, which were significantly smaller than the FWHMs (4.532° and 32.8°, respectively) of the ZnO film grown directly on Si (1 1 1) substrate without any buffer. Total dislocation density in the top region of film was estimated to be ∼5×109 cm−2. Most of dislocations have a screw type component, which is different from the general cases of ZnO films with the major threading dislocations with an edge component.  相似文献   

6.
High-quality zinc oxide (ZnO) films were successfully grown on ZnO-buffered a-plane sapphire (Al2O3 (1 1 2¯ 0)) substrates by controlling temperature for lateral growth using chemical bath deposition (CBD) at a low temperature of 60 °C. X-ray diffraction analysis and transmission electron microscopy micrographs showed that the ZnO films had a single-crystalline wurtzite structure with c-axis orientation. Rocking curves (ω-scans) of the (0 0 0 2) reflections showed a narrow peak with full width at half maximum value of 0.50° for the ZnO film. A reciprocal space map indicated that the lattice parameters of the ZnO film (a=0.3250 nm and c=0.5207 nm) were very close to those of the wurtzite-type ZnO. The ZnO film on the ZnO-buffered Al2O3 (1 1 2¯ 0) substrate exhibited n-type conduction, with a carrier concentration of 1.9×1019 cm−3 and high carrier mobility of 22.6 cm2 V−1 s−1.  相似文献   

7.
Epitaxial (La0.07Sr0.93)SnO3 [LSSO] films were deposited on CaF2 substrates by pulse laser deposition. The (1 0 0)c orientation of LSSO films was observed only on (1 1 0)CaF2, whereas (1 1 0)c orientation was found on (1 1 1)CaF2 and (1 0 0)CaF2. (0 0 1) polar axis oriented tetragonal Pb(Zr0.35Ti0.65)O3 films were grown on the fabricated (1 0 0)cLSSO∥(1 1 0)CaF2 by pulsed metal organic chemical vapor deposition. The (0 0 1)Pb(Zr0.35Ti0.65)O3∥(1 0 0)cLSSO∥(1 1 0)CaF2 stack structure exhibited about 70% transparency with an adsorption edge of approximately 330 nm.  相似文献   

8.
High voltage GaN Schottky diodes require a thick blocking layer with an exceptionally low carrier concentration. To this aim, a metal organic chemical vapor deposition process was developed to create a (14 μm) thick stress-free homoepitaxial GaN film. Low temperature photoluminescence measurements are consistent with low donor background and low concentration of deep compensating centers. Capacitance–voltage measurements performed at 30 °C verified a low level of about 2×1015 cm−3 of n-type free carriers (unintentional doping), which enabled a breakdown voltage of about 500 V. A secondary ion mass spectrometry depth profile confirms the low concentration of background impurities and X-ray diffraction extracted a low dislocation density in the film. These results indicate that thick GaN films can be deposited with free carrier concentrations sufficiently low to enable high voltage rectifiers for power switching applications.  相似文献   

9.
Non-doped and lithium doped nickel oxide crystalline films have been prepared onto quartz and crystalline alumina substrates at high substrate temperature (600 °C) by the pneumatic spray pyrolysis process using nickel and lithium acetates as source materials. The structure of all the deposited films was the crystalline cubic phase related to NiO, although this crystalline structure was a little bit stressed for the films with higher lithium concentration. The grain size had values between 60 and 70 nm, almost independently of doping concentration. The non-doped and lithium doped films have an energy band gap of the order of 3.6 eV. Hot point probe results show that all deposited films have a p-type semiconductor behavior. From current–voltage measurements it was observed that the electrical resistivity decreases as the lithium concentration increases, indicating that the doping action of lithium is carried out. The electrical resistivity changed from 106 Ω cm for the non-doped films up to 102 Ω cm for the films prepared with the highest doping concentration.  相似文献   

10.
Nitrogen was incorporated into ZnO films grown by metalorganic chemical vapour deposition (MOCVD) on ZnO substrates using DMZn-TEN, tert-butanol and diallylamine, respectively, as zinc, oxygen and doping sources. The carrier gas was either hydrogen or nitrogen and the partial pressure ratio (RVI/II) was varied in order to favor the nitrogen incorporation and/or reduce carbon related defects. The ZnO films have been characterized by Micro-Raman scattering and SIMS measurements. SIMS measurements confirm the nitrogen incorporation with concentrations extending from ∼1019 cm−3 to ∼4×1020 cm−3. Raman spectra show nitrogen local vibration modes in films grown at low RVI/II ratio and using H2 as carrier gas. However, a vibration band attributed to carbon clusters dominates the Raman spectra for films grown with N2 carrier. The contribution of N complexes was discussed. The strain was calculated for the as-grown and annealed films and it changes from tensile to compressive after annealing.  相似文献   

11.
Epitaxial thin films of TmFeCuO4 with a two-dimensional triangular lattice structure were successfully grown on yttria-stabilized-zirconia substrates by pulsed laser deposition and ex situ annealing in air. The films as-deposited below 500 °C showed no TmFeCuO4 phase and the subsequent annealing resulted in the decomposition of film components. On the other hand, as-grown films deposited at 800 °C showed an amorphous nature. Thermal annealing converted the amorphous films into highly (0 0 1)-oriented epitaxial films. The results of scanning electron microscopic analysis suggest that the crystal growth process during thermal annealing is dominated by the regrowth of non-uniformly shaped islands to the distinct uniform islands of hexagonal base.  相似文献   

12.
To improve the properties of polycrystalline Ge thin films, which are a candidate material for the bottom cells of low cost monolithic tandem solar cells, ∼300 nm in situ hydrogenated Ge (Ge:H) thin films were deposited on silicon nitride coated glass by radio-frequency magnetron sputtering. The films were sputtered in a mixture of 15 sccm argon and 10 sccm hydrogen at a variety of low substrate temperatures (Ts)≤450 °C. Structural and optical properties of the Ge:H thin films were measured and compared to those of non-hydrogenated Ge thin films deduced in our previous work. Raman and X-ray diffraction spectra revealed a structural evolution from amorphous to crystalline phase with increase in Ts. It is found that the introduction of hydrogen gas benefits the structural properties of the polycrystalline Ge film, sputtered at 450 °C, although the onset crystallization temperature is ∼90 °C higher than in those sputtered without hydrogen. Compared with non-hydrogenated Ge thin films, hydrogen incorporated in the films leads to broadened band gaps of the films sputtered at different Ts.  相似文献   

13.
GaN films were grown by metal organic chemical vapor deposition on TaC substrates that were created by pulsed laser deposition of TaC onto (0 0 0 1) SiC substrates at ∼1000 °C. This was done to determine if good quality TaC films could be grown, and if good quality GaN films could be grown on this closely lattice matched to GaN, conductive material. This was done by depositing the TaC on on-axis and 3° or 8° off-axis (0 0 0 1) SiC at temperatures ranging from 950 to 1200 °C, and examining them using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The GaN films were grown on as-deposited TaC films, and films annealed at 1200, 1400, or 1600 °C, and examined using the same techniques. The TaC films were polycrystalline with a slight (1 1 1) texture, and the grains were ∼200 nm in diameter. Films grown on-axis were found to be of higher quality than those grown on off-axis substrates, but the latter could be improved to a comparable quality by annealing them at 1200–1600 °C for 30 min. TaC films deposited at temperatures above 1000 °C were found to react with the SiC. GaN films could be deposited onto the TaC when the surface was nitrided with NH3 for 3 min at 1100 °C and the low temperature buffer layer was AlN. However, the GaN did not nucleate easily on the TaC film, and the crystallites did not have the desired (0 0 0 1) preferred orientation. They were ∼10 times larger than those typically seen in films grown on SiC or sapphire. Also the etch pit concentration in the GaN films grown on the TaC was more than 2 orders of magnitude less than it was for growth on the SiC.  相似文献   

14.
Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50–200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H2 and NH3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×108 cm−2.  相似文献   

15.
We report the deposition of thin titanium dioxide films on Si(1 0 0) and silica glass at low temperatures between 200 and 350 °C by a technique of ultraviolet-assisted injection liquid source chemical vapor deposition (UVILS-CVD) with 222 nm radiation. The composition and optical properties of the films deposited have been studied using a variety of standard characterisation methods. A strong absorption peak around 438 cm−1, corresponding to Ti-O stretching vibration, was observed by Fourier transform infrared spectroscopy for different deposition temperatures. Nanostructured films on Si wafers were observed by atomic force microscopy while X-ray diffraction results showed that crystalline TiO2 layers could be formed at deposition temperatures as low as 210 °C. The deposition kinetics and influence of the substrate temperature on the film are discussed. The activation energy for this photo-CVD process at temperatures between 200 and 350 °C was found to be 0.435 eV. This is much lower than the value (Ea=5.64 eV) obtained by conventional thermal CVD. The thicknesses of the films grown, from several nanometers to micrometers can be accurately controlled by changing the number of drops introduced by the injection liquid source. Under optimum deposition conditions, refractive index values as high as 2.5 and optical transmittance of between 85% and 90% in the visible region of the spectrum can be obtained.  相似文献   

16.
We present a detailed investigation on the influence of deposition conditions on morphological, structural and optical properties of InN films deposited on Si(1 1 1) and GaN-on-sapphire templates by reactive radio-frequency (RF) sputtering. The deposition parameters under study are nitrogen content in the sputtering gas, substrate–target distance, substrate temperature and RF power. X-ray diffraction measurements confirm the (0 0 0 1) preferred growth orientation and the wurtzite crystallographic structure of the material. For optimized deposition conditions, InN on Si(1 1 1) substrates presents smooth surface with root-mean-square roughness ∼1 nm. Surface quality of the InN films can be further improved by deposition on GaN-on-sapphire templates, achieving root-mean-square roughness as low as ∼0.4 nm, comparable to that of the underlying substrate. The room-temperature absorption edge is located at 1.70 eV. Intense low-temperature photoluminescence peaking at 1.60 eV is observed.  相似文献   

17.
Epitaxial NiO (1 1 1) and NiO (1 0 0) films have been grown by atomic layer deposition on both MgO (1 0 0) and α-Al2O3 (0 0 l) substrates at temperatures as low as 200 °C by using bis(2,2,6,6-tetramethyl-3,5-heptanedionato)Ni(II) and water as precursors. The films grown on the MgO (1 0 0) substrate show the expected cube on cube growth while the NiO (1 1 1) films grow with a twin rotated 180° on the α-Al2O3 (0 0 l) substrate surface. The films had columnar microstructures on both substrate types. The single grains were running throughout the whole film thickness and were significantly smaller in the direction parallel to the surface. Thin NiO (1 1 1) films can be grown with high crystal quality with a FWHM of 0.02–0.05° in the rocking curve measurements.  相似文献   

18.
Single-crystalline ZnO films have been grown on a-plane sapphire in plasma assisted molecular beam epitaxy by introducing a high-temperature ZnO buffer layer. The residual electron concentration of the films can be lowered to 1.5×1016 cm−3, comparable with the best value ever reported for ZnO films grown on a rare and costly substrate of ScAlMgO4. A 3×3 reconstruction has been observed on the films grown in this route, which reveals that the films have very smooth surface. X-ray phi-scan spectrum of the films shows six peaks with 60° intervals, and two-dimensional X-ray diffraction datum indicates the single-crystalline nature of the films. Low temperature photoluminescence spectrum of the films shows a dominant free exciton emission and five phonon replicas, confirming the high quality of the films.  相似文献   

19.
Li Wang 《Journal of Non》2011,357(3):1063-1069
Amorphous SiC has superior mechanical, chemical, electrical, and optical properties which are process dependent. In this study, the impact of deposition temperature and substrate choice on the chemical composition and bonding of deposited amorphous SiC is investigated, both 6 in. single-crystalline Si and oxide covered Si wafers were used as substrates. The deposition was performed in a standard low-pressure chemical vapour deposition reactor, methylsilane was used as the single precursor, and deposition temperature was set at 600 and 650 °C. XPS analyses were employed to investigate the chemical composition, Si/C ratio, and chemical bonding of deposited amorphous SiC. The results demonstrate that these properties varied with deposition temperature, and the impact of substrate on them became minor when deposition temperature was raised up from 600 °C to 650 °C. Nearly stoichiometric amorphous SiC with higher impurity concentration was deposited on crystalline Si substrate at 600 °C. Slightly carbon rich amorphous SiC films with much lower impurity concentration were prepared at 650 °C on both kinds of substrates. Tetrahedral Si-C bonds were found to be the dominant bonds in all deposited amorphous SiC. No contribution from Si-H/Si-Si but from sp2 and sp3 C-C/C-H bonds was identified.  相似文献   

20.
Bi3.15Nd0.85Ti2.8-xZr0.2MnxO12 (BNTZM) thin films with various Mn content (x = 0, 0.005, 0.01, 0.03, and 0.05) have been prepared on Pt/Ti/SiO2/Si (100) substrates by a chemical solution deposition (CSD) technique. The crystal structures of BNTZM thin film have been analyzed by X-ray diffraction (XRD). The dependence of Mn contents on the ferroelectric, dielectric properties, and leakage current of these BNTZM films have been thoroughly investigated. The XRD analysis demonstrated that all the BNTZM thin films were of typical bismuth-layer-structured ferroelectrics (BLSF) polycrystalline structure and exhibited a highly preferred (117) orientation. Among these BNTZM films, the BNTZM thin film with Mn content equal to 0.01 exhibits the maximum remnant polarization (2Pr) of 48μC/cm2 and a low coercive field (2Ec) of 177 kV/cm. In addition, the BNTZM thin film with x = 0.01 (Mn) showed a fatigue-free behavior up to 1 × 1010 read/write cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号