首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a vertical high magnetic field (up to 10 T) on the dendrite morphology has been investigated during Bridgman growth of Al–4.5 wt%Cu alloys experimentally. It is found that the field causes disorder in dendrites and their tilt in orientation. Along with the increase of the magnetic field and decrease of the growth velocity, the dendrites became broken and orientated in 1 1 1 along the direction of solidification instead of 1 0 0. The field also enlarged the primary dendrite spacing and promoted the branching of the dendrites to form high-order arms. Above phenomena are attributed to the thermoelectromagnetic convection effect and orientation caused by the high magnetic field.  相似文献   

2.
We investigated the impact of an amorphous Ge (a-Ge) thin layer inserted at the amorphous Si (a-Si)/Al interface on Al-induced crystallization. In situ observation of the growth process clarified that the nucleation rate is drastically reduced by insertion of a-Ge, which led to increase in the average size of crystal grains. This was interpreted as resulting from decrease in the driving force of crystallization, mainly due to the larger solubility of Ge in Al than that of Si in Al. The obtained films were SiGe alloys with lateral distribution of Ge content, and its origin is discussed based on the two-step nucleation process.  相似文献   

3.
Transport of ionic species in the melt and their partitioning at the solid–liquid interface during growth of lithium niobate was studied under the influence of intrinsic and external electric fields. A Mn-doped lithium niobate (Mn:LiNbO3) single crystal was grown via the micro-pulling-down (μ-PD) method with electric current injection at the interface. Mn ions were accumulated or depleted at the interface, depending on the sign of the injected current. The electric current injection induced an interface electric field as well as a Coulomb force between the interface and Mn ions. The electric field modified the transportation of Mn ions and their partitioning into the crystal, while the Coulomb force led to adsorption or rejection of Mn ions at the interface in addition to Mn concentration change due to the electric field. Effect of the Coulomb force was often observed to be larger on Mn concentration at the interface than that of the induced electric field, and dominated the redistribution of Mn in the solid. It has been experimentally and analytically shown that Mn concentration partitioned into the crystal can be obtained by multiplying Mn concentration at the interface by a field-modified partition coefficient, kE0, instead of the conventional equilibrium partition coefficient, k0.  相似文献   

4.
The preparation of large bulk oxide eutectics with homogeneous and dense structure in nano-scale by melt growth method is a difficult challenge. Fully dense, homogeneous and crack-free ternary nanostructured Al2O3/YAG/ZrO2 hypereutectic plate with large surface is successfully obtained by laser remelting. The hypereutectic in selected composition presents an ultra-fine eutectic-like microstructure consisting of alternating interpenetrating Al2O3, YAG and ZrO2 lamellae with mean interphase spacing of about 150 nm, which is much smaller than the ternary eutectic composition grown at the same growth conditions. With the increase of laser scanning rate, the lamellar spacing is rapidly decreased. The minimum value obtained is 50 nm. The analysis indicates that the strong faceted growth behavior and cooperative branching of the component phases related with high entropies of fusion and large kinetic undercooling during laser rapid solidification are the primary formation reasons for the irregular eutectic growth morphology. Furthermore, the unique cellular microstructure with complex structure is also observed at high growth rate, and their formation mechanism and effect of the composition on the microstructure are discussed.  相似文献   

5.
This paper is to investigate the growth of Nd:YVO4 (yttrium vanadate) crystal by the modified Czochralski technique with a submerged plate. Numerical studies are performed to examine melt convection and heat transfer during Nd:YVO4 growth. The attention is paid to study the effects of initial elevation of the submerged plate, crystal diameter, and melt level on melt inclusions. It is found that the increase in crystal rotation rate and crystal diameter, and the decrease in melt level will increase the axial temperature gradient at the edge and in the center of the crystal, and change the interface shape from convex to flat. The experiments are also carried out to confirm the feasibility of the proposed new technique for controlling melt inclusions in Nd:YVO4 crystal growth.  相似文献   

6.
We have succeeded in effectively stopping the propagation of basal stacking faults in (1 1 −2 2) semipolar GaN films on sapphire using an original epitaxial lateral overgrowth process. The growth conditions were chosen to enhance the growth rate along the [0 0 0 1] inclined direction. Thus, the crystal expands laterally until growth above the a-facet of the adjacent crystal seed, where the basal stacking faults emerge. The growth anisotropy was monitored using scanning electron microscopy. The faults filtering and improvement of crystalline quality were attested by transmission electron microscopy, X-ray diffraction and low temperature photoluminescence, which exhibits high intensity band-edge emission with low stacking faults related emission.  相似文献   

7.
Numerical and experimental results on the thermal optimisation of vertical gradient freeze crystal growth are presented. An inverse modelling approach is described aimed at solidification with a constant growth rate and planar solid–liquid interface. As a result of modelling an optimised growth process characterised by a modified ampoule configuration and thermal regime was established. For experimental confirmation Ga-doped germanium single crystals were grown with the optimised process. In good agreement with the numerical results, solidification with an almost constant growth rate was achieved with the interface deflection being significantly lower than in conventionally grown crystals.  相似文献   

8.
A series of isovelocity experiments was performed to investigate the interface morphology evolution during the solid-state ferrite–austenite transformation of the Fe–Mn–Al alloy, and a quantitative relationship between cellular spacing and growth velocity had been measured. The corresponding cellular spacing of the product phase decreases with the growth velocity increasing. Theoretical model modified from directional solidification process was also applied to study the relationship between cellular spacing and growth velocity, and the theoretical prediction corresponds well with the measured results.  相似文献   

9.
The use of a selenium–tellurium (SeTe) mixed source in the isothermal close space sublimation growth of CdSe epilayers is considered. The epitaxial growth was performed in flowing helium by sequential exposures of the substrate to vapors of the mixed SeTe source and elemental cadmium at temperatures within 350–410 °C. In spite of the mixed source (proposed to decrease the partial pressure of Se), tellurium incorporation was small and CdSexTe(1−x) (x∼0.98) epilayers were obtained. X-ray diffraction reciprocal space mapping shows the existence of hexagonal inclusions mainly on the (1 1 1) facets of the cubic phase. Material deposition on areas of the graphite crucible exposed to the sources, contamination of the Cd source and large growth rates suggest the existence of a selenium transport process via graphite. This transport might be the result of the combination of selenium deposition on graphite with a subsequent activated desorption of selenium under cadmium exposure. It affects Cd source purity and growth kinetic bringing on a modification of the usual atomic layer deposition regimen; however, a reproducible growth rate of the epilayers was obtained.  相似文献   

10.
We explore how the inclusion of an anti-trapping current within a phase-field model of coupled thermo-solutal growth formulated in the thin interface limit actually affects the observed levels of solute trapping during dendritic growth. The problem is made computationally tractable by the use of advanced numerical techniques including local mesh adaptivity, implicit temporal discretization and a multigrid solver. Contrary to published results for pure solutal models we find that the inclusion of such an anti-trapping current does not lead to the recovery of the equilibrium partition coefficient, except in the limit of vanishing growth velocity. At higher growth velocities non-vanishing amounts of solute trapping are observed.  相似文献   

11.
We developed an automatic feedback control system of the crystal–melt interface position to keep the temperature at the interface constant during growth, and demonstrate its successful application to grow Ge-rich SiGe bulk crystals with uniform composition. In this system, the position of the crystal–melt interface was automatically detected by analyzing the images captured using in situ monitoring system based on charge-coupled-devices camera, and the pulling rate of the crucible was corrected at every 1 min. The system was found to be effective to keep the crystal–melt interface position during growth even when the variation of the growth rate is quite large. Especially, the interface position was kept for 470 h during growth of Ge-rich SiGe bulk crystal when we started with a long growth melt of 80 mm. As a result, a 23 mm-long Si0.22Ge0.78 bulk crystal with uniform composition was obtained thanks to the constancy of the growth temperature during growth through the control of the interface position. Our technique opens a possibility to put multicomponent bulk crystal in a practical use.  相似文献   

12.
Stability analysis of a growing solid/liquid interface is the fundamental concept of modern solidification theory. Here, serial laser rapid solidification experiments were performed on a hypoperitectic Ti47Al53 alloy to explore the dendritic growth behavior near the limit of high-velocity absolute stability. SEM and TEM techniques were carried out to investigate the microstructure and identify the phase composition. By adopting an improved sampling method of TEM, the growth morphology evolution of the laser-resolidified layer was observed directly and high-velocity banding structure was firstly detected in Ti–Al peritectic alloys. The high-velocity banding structures are parallel to the solid/liquid interface (normal to the growth direction) and made of the oscillation structures grown alternatively in modes of cell and plane morphologies. In light bands with cellular growth mode, all dislocation assembles are parallel to the growth direction and forms the cell boundaries, while all dislocation distributes randomly in dark bands. The determined growth velocity range for the appearance of high-velocity banding structures is about 0.51.1 m s−1 according to the rapid solidification experiments, and the origin of the banding agrees well with the prediction of the CGZK phenomenological model (Acta Metal. Mater. 40 (1992) 983).  相似文献   

13.
Non-polar a-plane (1 1 2¯ 0) GaN films were grown on r-plane sapphire by metal–organic vapor phase epitaxy and were subsequently annealed for 90 min at 1070 °C. Most dislocations were partial dislocations, which terminated basal plane stacking faults. Prior to annealing, these dislocations were randomly distributed. After annealing, these dislocations moved into arrays oriented along the [0 0 0 1] direction and aligned perpendicular to the film–substrate interface throughout their length, although the total dislocation density remained unchanged. These changes were accompanied by broadening of the symmetric X-ray diffraction 1 1 2¯ 0 ω-scan widths. The mechanism of movement was identified as dislocation glide, occurring due to highly anisotropic stresses (confirmed by X-ray diffraction lattice parameter measurements) and evidenced by macroscopic slip bands observed on the sample surface. There was also an increase in the density of unintentionally n-type doped electrically conductive inclined features present at the film–substrate interface (as observed in cross-section using scanning capacitance microscopy), suggesting out-diffusion of impurities from the substrate along with prismatic stacking faults. These data suggest that annealing processes performed close to film growth temperatures can affect both the microstructure and the electrical properties of non-polar GaN films.  相似文献   

14.
In this study, we report on the enhancement in the light extraction efficiency of GaN blue LEDs topped with ZnO nanorods. The ZnO nanorods were grown by a two-step hydrothermal synthesis with pre-coated ZnO nanoparticles under optimized condition to give the appropriate size and quality, giving an increase in the light output efficiency of 66%. This improvement is attributed to the optimal rod size and spacing with improved thermal dissipation as compared to light extraction from plain GaN surface. During the ZnO growth on the LEDs, 0.55 M of NH3 was added and the ZnO sample was later annealed at 475 °C in N2 ambient, to drive out interstitial oxygen atoms from the tetrahedral unstable site. As a result, a high ratio of UV to orange defect band emission was achieved. The two-step growth of ZnO nanorods on GaN LEDs was effective in generating array of ZnO nanorods which serve as reflector to enhance light extraction from LEDs.  相似文献   

15.
Providing benchmark data of the thermal and metallographic parameters during the columnar-to-equiaxed transition (CET) in a wide range of alloy concentrations is of fundamental importance for understanding this phenomenon as well as for metallurgical and modeling purposes. The aim of this study was to investigate the columnar-to-equiaxed transition (CET) in aluminum–copper alloys of different compositions covering a wide range from 2 to 33.2 wt%Cu (eutectic composition), which were directionally solidified from a chill face. The thermal parameters studied included recalescence, cooling rates, temperature gradients and interphase velocities. We found that the temperature gradient and velocity of the liquidus interphase reached critical values at the CET; these critical values were between −0.44 and 0.09 K/mm and between 0.67 and 2.16 mm/s, respectively. The metallographic parameters analyzed were grain size, primary and secondary dendritic arm spacing and also eutectic spacing. The results obtained were compared with previous experimental studies, published predictions and models of the CET for similar alloys.  相似文献   

16.
The work reported here involved a study of the growth kinetics of V2O5nH2O nanostructures under hydrothermal conditions. The coarsening process of V2O5nH2O nanoribbons was followed by subjecting the as-prepared suspensions to hydrothermal treatments at 80 °C for periods ranging from 0 to 7200 min. X-ray diffraction (XRD) confirms that the hydrothermal treatments at 80 °C caused no significant modification of the long-range order structure of samples subjected to different periods of hydrothermal treatment. Field emission scanning transmission electron microscope (FE-STEM) was used to analyze the morphology and width distribution of the nanostructures. The results indicated that the crystal growth mechanism in the [1 0 0] direction of vanadium pentoxide 1D nanostructure under hydrothermal conditions is well described by the oriented attachment (OA) mechanism. This evidence was supported by HRTEM images showing the existence of defects at the interface between nanostructures, which is characteristic of the oriented attachment (OA) mechanism.  相似文献   

17.
The global heat transfer in a crystallization setup has been optimized to develop a strategy of control over a three-zone heater in the BGO Czochralski process, in order to provide invariable thermal conditions near the solid–liquid interface in the stage of a constant-diameter crystal growth. The functional related to the exactness of the heat balance condition at the crystallization front, i.e., the Stefan problem, was chosen as the target function. The optimization yielded unexpected results. The temperature of the lower heater should be lowered, relative to that of the middle heater, with increasing crystal length, whereas the temperature of the upper heater is to be raised. These recommendations were incorporated into a dynamic model of the oxide Czochralski process with a weighing control and into the control loop of the temperature regulators of a crystallization setup. A comparison of results of the time-dependent simulation with the real growth process confirmed that the new control strategy minimizes the deviation of the solid–liquid interface from the prescribed one, significantly decreases variations of interface shape during the process, and enables growth of high-quality crystals.  相似文献   

18.
Nonstoichiometric (Cu2−xSe) and stoichiometric (CuSe, β-Cu2Se and Cu2Se) copper selenide hexagonal nanoplates have been synthesized using different general and convenient copper sources, e.g. copper chloride, copper sulphate, copper nitrate, copper acetate, elemental copper with elemental selenium, friendly ethylene glycol and hydrazine hydrate in a defined amount of water at 100 °C within 12 h adopting the solvothermal method. Phase analysis, purity and morphology of the product have been well studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray diffraction (EDAX) techniques. The structural and compositional analysis revealed that the products were of pure phase with corresponding atomic ratios. SEM, TEM and HRTEM analyses revealed that the nanoplates were in the range 200–450 nm and the as-prepared products were uniform and highly crystallized. The nanoplates consisted of {0 0 1} facets of top–bottom surfaces and {1 1 0} facets of the other six side surfaces. This new approach encompasses many advantages over the conventional solvothermal method in terms of product quality (better morphology control with high yield) and reaction conditions (lower temperatures). Copper selenide hexagonal nanoplates obtained by the described method could be potential building blocks to construct functional devices and solar cell. This work may open up a new rationale on designing the solution synthesis of nanostructures for materials possessing similar intrinsic crystal symmetry. On the basis of the carefully controlled experiments mentioned herein, a plausible formation mechanism of the hexagonal nanoplates was suggested and discussed. To the best of our knowledge, this is the first report on nonstoichiometric (Cu2−xSe) as well as stoichiometric (CuSe, β-Cu2Se and Cu2Se) copper selenide hexagonal nanoplates with such full control of morphologies and phases by this method under mild conditions.  相似文献   

19.
Growth interface of large diameter CdZnTe ingots grown from Te solution by travelling heater method have been studied. Both macroscopic and microscopic investigations were carried out. The results indicated that the shape of the interface strongly governs the grain growth on the ingot, while the microscopic morphology of the growth interface is responsible for Te inclusions in the grown crystal.  相似文献   

20.
Nonionic polymer poly (vinylpyrrolidone) (PVP) was firstly mixed into oxygenated zinc chloride electrolyte to modulate the crystal growth and morphology of ZnO from electrodeposition. Arrays of ZnO hexagonal prisms with well-defined (0 0 0 1) end facets and side facets were grown perpendicularly onto p-type Si substrates using the simple and economic route. It was observed that the concentration of PVP played an important role in the final morphology and size of ZnO crystals. The optical studies indicated that the addition of PVT not only influenced crystal growth habit but also improved the optical properties of ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号