首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two groups of coated conductor samples with different thicknesses of CeO2 cap layers deposited by pulsed laser deposition (PLD) under the same conditions have been studied. Of them, one group is of CeO2 films, which are deposited on stainless steel (SS) tapes coated by IBAD-YSZ (IBAD-YSZ/SS), and the other group is of CeO2/YSZ/Y2O3 multilayers, which are deposited on NiW substrates by PLD for the fabrication of YBCO-coated conductor through the RABiTS approach. YBCO film is then deposited on the tops of both types of buffer layers by PLD. The effects of the thickness of the CeO2 film on the texture of the CeO2 film and the critical current density (Jc) of the YBCO film are analysed. For the case of CeO2 film on IBAD-YSZ/SS, there appears a self-epitaxy effect with increasing thickness of the CeO2 film. For CeO2/YSZ/Y2O3/NiW, in which the buffer layers are deposited by PLD, there occurs no self-epitaxy effect, and the optimal thickness of CeO2 is about 50 nm. The surface morphologies of the two groups of samples are examined by SEM.  相似文献   

2.
Yttria-stabilized zirconia (YSZ) buffer layers were deposited on CeO2 buffered biaxially textured Ni-W substrate by reel-to-reel pulsed laser deposition (PLD) for the application of YBa2Cu3O7−δ (YBCO) coated conductor and the influence of substrate temperature and laser energy on their crystallinity and microstructure were studied. YSZ thin films were prepared with substrate temperature ranging from 600 to 800 °C and laser energy ranging from 120 to 350 mJ. X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin film structure and surface morphology depend on these parameters. It was found that the YSZ films grown at substrate temperature below 600 °C or laser energy above 300 mJ showed amorphous phase, the (0 0 1) preferred orientation and the crystallinity of the YSZ films were improved with increasing the temperature, but the surface roughness increased simultaneously, the SEM images of YSZ films on CeO2/NiW tapes showed surface morphologies without micro-cracks. Based on these results, we developed the epitaxial PLD-YSZ buffer layer process at the tape transfer speed of 3-4 m/h by the reel-to-reel system for 100 m class long YBCO tapes.  相似文献   

3.
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points.  相似文献   

4.
A composite material (hereafter referred to as NYC) containing Ni, Y2O3-stabilized ZrO2 (YSZ) and Ce0.9Ca0.1O2−δ (CC10) particles was prepared and used as the anode of solid oxide fuel cells (SOFCs). The performance of NYC was better than that of conventional Ni/YSZ anodes in terms of anodic overpotential and interface impedance. The additional CC10 particles improved the anode properties. XRD results suggest that a solid solution of YSZ and CC10 was produced. From impedance measurements, it is concluded that the solid solution exhibits substantial electronic conduction. Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ anodes exhibited the best properties over the experimental temperature range. A SOFC with an anode of Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ provided the maximum power density and current density. Addition of CC10 with an average particle size of 0.3 μm was more advantageous than that with an average size of 3 μm.  相似文献   

5.
Yttrium trioxide (Y2O3) thin films have been deposited on silicon (1 1 1) substrates by RF magnetron sputtering. The influences of thermal exposure at high temperature in air on the structure, the surface morphology, roughness, and the refractive index of the Y2O3 thin film were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and spectroscopic ellipsometry (SE). The results indicate that chemical composition of the as-deposited Y2O3 film is apparently close to the stoichiometric ratio, and it has a cubic polycrystalline structure but the crystallinity is poor. The monoclinic and cubic phases can coexist in the Y2O3 film after thermal exposure to 900 °C, and the monoclinic phase disappears completely after 300 s exposure to 950 °C. The changes of the surface morphology, roughness, and the refractive index of the Y2O3 film are closely related to the crystal structure, the internal stress, and various defects influenced by thermal exposure temperature and time.  相似文献   

6.
Biaxially textured YBa2Cu3O7−x (YBCO) films were grown on inclined-substrate-deposited (ISD) MgO-textured metal substrates by pulsed laser deposition. CeO2 was deposited as a buffer layer prior to YBCO growth. CeO2 layers of different thickness were prepared to evaluate the thickness dependence of the YBCO films. The biaxial alignment features of the films were examined by X-ray diffraction 2θ-scans, pole-figure, ?-scans and rocking curves of Ω angles. The significant influence of the CeO2 thickness on the structure and properties of the YBCO films were demonstrated and the optimal thickness was found to be about 10 nm. High values of Tc = 91 K and Jc = 5.5 × 105 A/cm2 were obtained on YBCO films with optimal CeO2 thickness at 77 K in zero field. The possible mechanisms responsible for the dependence of the structure and the properties of the YBCO films on the thickness of the CeO2 buffer layers are discussed.  相似文献   

7.
Vitroceramic powders of Li2O-Al2O3-SiO2 systems (LAS), doped with 1% (LAS:1Ce) and 10% (LAS:10Ce) molar of cerianite (CeO2) were synthesized by means of the gelification technique of metal formates of aluminum and lithium, in the presence of tetraethoxy silane and CeO2. The gels obtained were dried (120 °C, 2.5 h), calcined (480 °C, 5 h) and sinterized (1250 °C, 30 min). The sinterized samples were characterized by X-ray difraction (XRD), scanning electron microscopy (SEM) and microchemical analysis (EDS). There is evidence for a mixture of two phases of 64% β-spodumene (Li2O-Al2O3-4SiO2) and 36% β-eucryptite (Li2O-Al2O3-2SiO2). The LAS:1Ce system was enriched in aluminum, the LAS:10Ce system showed areas of heterogeneous composition; some regions with a shortage of CeO2, while others zones with cerium cumulus. From the microscopy images it was found that CeO2 acts as a densificant agent in LAS system, favoring the sintering in the host. The chemical route and the sintering processes utilized allow the production of samples exhibiting an acceptable linear correlation between total thermoluminescent emission intensity and the irradiation dose when the CeO2 concentration is low (less than 1%), opening the possibility of using this kind of glass-ceramic in dosimetry.  相似文献   

8.
xV2O5xCeO2–(30−x)PbO–(70−x) B2O3 glasses are synthesized by using the melt quench technique. The number of studies such as XRD, density, molar volume, optical band gap, refractive index and FTIR spectroscopy are employed to characterize the glasses. The band gap decreases from 2.20 to 1.78 eV and density increases from 3.49 to 4.25 g/cm3. FTIR spectroscopy reveals that incorporation of V2O5 in glass network helps to convert the structural units of [BO3] into [BO4]. At higher concentration of vanadium, VO vibration of [VO5] structural units and V–O–V vibration are present. The bond ionicity of glasses increases with incorporation of V2O5 contents.  相似文献   

9.
Biaxially textured YBa2Cu3O7−x (YBCO) films were grown on non-textured metal substrates with inclined-substrate-deposited (ISD) MgO as template. The biaxial texture feature of the films was examined by X-ray pole-figure analysis, φ-scan, and 2θ-scan. A tilt angle of 32° of the MgO[001] with respect to the substrate normal was observed. Epitaxial growth of YBCO films with c-axis tilt angle of 32° with respect to the substrate normal was obtained on these substrates with SrTiO3(STO) as buffer layer. Whereas, by choosing yttria-stabilized ZrO2 and CeO2 instead of STO as buffer layer, a c-axis untilted YBCO film was obtained. Higher values of Tc=91 K and Jc=5.5×105 A/cm2 were obtained on the c-axis untilted YBCO films with 0.46 μm thickness at 77 K in zero field. Comparative studies revealed a unique role of CeO2 in controlling the orientation of the YBCO films grown on ISD-MgO buffered metal substrates.  相似文献   

10.
The temperature dependence of the resistivity for composite samples of (1−x)La0.67Ba0.33MnO3+xYSZ(LBMO/YSZ) with different YSZ doping level of x has been investigated in a magnetic field range of 0-7000 Oe, where the YSZ represents yttria-stabilized zirconia (8 mol% Y2O3+92 mol% ZrO2). With increasing YSZ doping level, the range of 0-10%, the metal-insulator transition temperature (TP) decreases. However, the resistivity, specially the low temperature resistivity, increases. Results also show that the YSZ doping level has an important effect on a low field magnetoresistance (LFMR). In the magnetic field of 7000 Oe, a room temperature magnetoresistance value of 20% was observed for the composite with a YSZ doping level of 2%, which is encouraging for potential application of CMR materials at room temperature and low field.  相似文献   

11.
In this work, the complete matrix of optical spectral levels in trigonal symmetry of 3d2 (3d8) ions are established on basis of strong field coupling mechanism by using two spin–orbit coupling parameters model. The contribution of the spin–orbit coupling of ligand to the optical spectra has been included in these formulas. As an application, the optical spectra of Cr4+ in Y2Ti2O7 and Y2Sn2O7 have been studied by the complete diagonalization (energy matrix) method. The covalent effect has been studied and the difficulty about Dq parameter in explanation of optical spectra of Cr-doped Y2Ti2O7 and Y2Sn2O7 is removed. The theoretical results are in good agreement with observed data.  相似文献   

12.
Double-barrier magnetic tunnel junctions (DBMTJs) were prepared from Co(75 nm)/Al2O3(2.3 nm)/Co(5 nm)/Al2O3(2.3 nm)/Co(50 nm) sputtering pentalayer films. The ac electrical properties of as-deposited DBMTJs and those annealed in a vacuum at 100–350 °C for 30 min were then investigated using a complex impedance spectroscopic technique. The ac impedance responses as a function of annealing temperature were further analyzed based on Maxwell's layered dielectric barrier and Maxwell–Wagner capacitor models after considering the DBMTJs as having double-capacitor-type structures. The effect of thermal annealing on the ac transport behavior of the DBMTJs was interpreted by examining the equivalent electric circuits fitted to Nyquist plots of each different sample. The effects were found to be due to changes in the structural characteristics in both bulk and interface morphologies of Co and Al2O3 layers. The structural morphology determined the different ac transport modes that occurred in the DBMTJs.  相似文献   

13.
Partial electronic conductivity and total conductivity have been determined by Hebb-Wagner polarization method and a.c. impedance spectroscopy, respectively, on bilayer electrolyte Zr0.84Y0.16O1.92(YSZ)/Ce0.9Gd0.1O1.95(GDC) with thickness ratios 10− 3/1 and 10− 4/1 at 800°, 900° and 1000 °C, respectively. While their ionic conductivities remain close to that of GDC, the electronic conductivities are suppressed the more from that of GDC towards that of YSZ the higher the thickness ratio, as expected. Even when the GDC-side is exposed to reducing atmosphere, the electronic conductivity is also suppressed, but to a less extent. It is suggested that oxygen activity distribution is discontinuous across the YSZ/GDC interface under ion-blocking condition, refuting the “continuity hypothesis” that has been usually adopted in calculating the oxygen activity distribution across a multilayer of mixed conductor oxides. The electrolytic domain widths of the bilayer electrolyte are reported depending on temperature, thickness ratio and direction of oxygen activity gradient imposed.  相似文献   

14.
Nanocrystalline Y2Si2O7:Eu phosphor with an average size about 60 nm is easily prepared using silica aerogel as raw material under ultrasonic irradiation and annealing temperature at 300-600 °C and this nanocrystalline decomposes into Y2O3:Eu and silica by heat treatment at 700-900 °C. The excitation broad band centered at 283 and 254 nm results from Eu3+ substituting for Y3+ in Y2Si2O7 and Y2O3/SiO2, respectively. Compared with Y2O3:Eu/SiO2 crystalline, the PL excitation and emission peaks of Y2Si2O7:Eu nanocrystalline red-shift and lead to the enhance of its luminescence intensity due to the different chemical surroundings of Eu3+ in above nanocrystallines. The decrease of PL intensity may be ascribed to quenching effect resulting from more defects in Y2O3:Eu/SiO2 crystalline.  相似文献   

15.
Nano-sized Y2O3 particles were codeposited with nickel by electrolytic plating from a nickel sulfate bath. The effects of the incorporated Y2O3 on the structure, morphology and mechanical properties (including microhardness, friction coefficient and wear resistant) of Ni-Y2O3 composite coatings were studied. It is observed that the addition of nano-sized Y2O3 particles shows apparent influence on the reduction potential and pH of the electrolyte. The incorporated Y2O3 increases from 1.56 wt.% to 4.4 wt.% by increasing the Y2O3 concentration in the plating bath from 20 to 80 g/l. XRD results reveal that the incorporated Y2O3 particles favour the crystal faces (2 0 0) and (2 2 0). SEM and AFM images demonstrate that the addition of Y2O3 particles causes a smooth and compact surface. The present study also shows that the codeposited Y2O3 particles in deposits decrease the friction coefficient and simultaneously reduce the wear weight loss. Ni-Y2O3 composite coatings reach their best microhardness and tribological properties at Y2O3 content 4.4 wt.% under the experiment conditions.  相似文献   

16.
The electrical conductivity of the system Y2O3CeO2 was measured in the temperature range 500–1100°C and Po2 range 10–7?10?1 atm. Possible defect models were suggested on the basis of conductivity data, which were investigated as a function of temperature and of Po2. The observed activation energies were 0.40 eV and 1.79 eV in the low- and high-temperature regions, respectively. The observed conductivity dependences on Po2 were σ ∝ P16O2 in the temperature range 500–750°C and σ ∝ P15.3O2 at temperatures from 750–1100°C. It is suggested that the system Y2O3CeO2 shows a mixed ionic plus hole conduction due to an Oi defect and an electronic hole conduction due to a V'''Y defect in the low- and high-temperature regions, respectively.  相似文献   

17.
We report the laser-induced voltage (LIV) effects in c-axis oriented Bi2Sr2Co2Oy thin films grown on (0 0 1) LaAlO3 substrates with the title angle α of 0°, 3°, 5° and 10° by a simple chemical solution deposition method. A large open-circuit voltage with the sensitivity of 300 mV/mJ is observed for the film on 10° tilting LaAlO3 under a 308 nm irradiation with the pulse duration of 25 ns. When the film surface is irradiated by a 355 nm pulsed laser of 25 ps duration, a fast response with the rise time of 700 ps and the full width at half maximum of 1.5 ns is achieved. In addition, the experimental results reveal that the amplitude of the voltage signal is approximately proportional to sin 2α and the signal polarity is reversed when the film is irradiated from the substrate side rather than the film side, which suggests the LIV effects in Bi2Sr2Co2Oy thin films originate from the anisotropic Seebeck coefficient of this material.  相似文献   

18.
Y1.9−xLi0.1EuxO3 (x=0.02, 0.05, 0.08, and 0.12) films were fabricated by spin-coating method. A colloidal silica suspension with Y1.9−xLi0.1EuxO3 phosphor powder was exploited to obtain the highly stable and effective luminescent films onto the glass substrate. After heating as-prepared Y1.9−xLi0.1EuxO3 films at 700 °C for 1 h, the phosphor films exhibit a high luminescent brightness as well as a strong adhesiveness on the glass substrate. The emission spectra of spin-coated and pulse-laser deposited Y1.82Li0.1Eu0.08O3 films were compared. The cathodoluminescence of the phosphor films was carried out at the anode voltage 1 kV.  相似文献   

19.
In the present work, La2Zr2O7 (LZO) buffer layers were deposited using pulsed laser deposition (PLD) on various metallic substrates including epitaxial pure Ni on a LaAlO3 (LAO) substrate as well as highly textured Ni–5 at.%W tapes. It is shown that the LZO deposited on pure Ni-buffered LAO exhibits a mixed orientation while LZO on Ni–5 at.%W grows epitaxially. This difference may be explained by the existence of a sulphur superstructure on the surface of Ni–5 at.%W tapes, promoting the epitaxial (0 0 l) nucleation of seed layers. Highly textured YBa2Cu3O7?δ layers were prepared either by using a single buffer layer of LZO or bilayer buffers of CeO2/LZO on Ni–5 at.%W. The superconducting transition temperature (Tc) increases with the LZO thickness, reaching a value of 90 K with a very narrow transition width (1.5 K) for 240 nm thick LZO layers. Inductive Jc measurements at 77 K in self-field show a value of about 0.96 MA/cm2 for the thickest LZO layers, which is comparable to the value observed on standard buffer architectures such as CeO2/YSZ/Y2O3.  相似文献   

20.
Novel three-layer YSZ-(YSZ/Al2O3)-YSZ (6 wt.% Y2O3 partially stabilized ZrO2) thermal barrier coatings (TBCs) were successfully prepared on Ni-based superalloy substrate using composite sol-gel and pressure filtration microwave sintering (PFMS) techniques. The coatings were evaluated for the cyclic oxidation resistance, thermal barrier effect and the presences of phases and microstructures. FE-SEM results indicate that the coatings were dense and crack-free. The coatings maintained their structural integrity when they were exposed at 1100 for 100 h. They exhibited superior oxidation resistance, spallation resistance and thermal insulation property compared with single-layer YSZ coatings. Moreover, the detailed mechanisms were discussed in order to understand the improved performance of the three-layer TBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号