首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the asymptotic behavior of the outliers of the sum a Hermitian random matrix and a finite rank matrix which is not necessarily Hermitian. We observe several possible convergence rates and outliers locating around their limits at the vertices of regular polygons as in Benaych-Georges and Rochet (Probab Theory Relat Fields, 2015), as well as possible correlations between outliers at macroscopic distance as in Knowles and Yin (Ann Probab 42(5):1980–2031, 2014) and Benaych-Georges and Rochet (2015). We also observe that a single spike can generate several outliers in the spectrum of the deformed model, as already noticed in Benaych-Georges and Nadakuditi (Adv Math 227(1):494–521, 2011) and Belinschi et al. (Outliers in the spectrum of large deformed unitarily invariant models 2012, arXiv:1207.5443v1). In the particular case where the perturbation matrix is Hermitian, our results complete the work of Benaych-Georges et al. (Electron J Probab 16(60):1621–1662, 2011), as we consider fluctuations of outliers lying in “holes” of the limit support, which happen to exhibit surprising correlations.  相似文献   

2.
Our interest in this paper is to explore limit theorems for various geometric functionals of excursion sets of isotropic Gaussian random fields. In the past, asymptotics of nonlinear functionals of Gaussian random fields have been studied [see Berman (Sojourns and extremes of stochastic processes, Wadsworth & Brooks, Monterey, 1991), Kratz and León (Extremes 3(1):57–86, 2000), Kratz and León (J Theor Probab 14(3):639–672, 2001), Meshenmoser and Shashkin (Stat Probab Lett 81(6):642–646, 2011), Pham (Stoch Proc Appl 123(6):2158–2174, 2013), Spodarev (Chapter in modern stochastics and applications, volume 90 of the series Springer optimization and its applications, pp 221–241, 2013) for a sample of works in such settings], the most recent addition being (Adler and Naitzat in Stoch Proc Appl 2016; Estrade and León in Ann Probab 2016) where a central limit theorem (CLT) for Euler integral and Euler–Poincaré characteristic, respectively, of the excursions set of a Gaussian random field is proven under some conditions. In this paper, we obtain a CLT for some global geometric functionals, called the Lipschitz–Killing curvatures of excursion sets of Gaussian random fields, in an appropriate setting.  相似文献   

3.
We give an alternative proof of the fact that the vertex-reinforced jump process on Galton–Watson tree has a phase transition between recurrence and transience as a function of \(c\), the initial local time, see Basdevant et al. (Ann Appl Probab 22(4):1728–1743, 2012). Further, applying techniques in Aidékon (Probab Theory Relat Fields 142(3–4):525–559, 2008), we show a phase transition between positive speed and null speed for the associated discrete-time process in the transient regime.  相似文献   

4.
In this paper we study a sharp interface limit for a stochastic reaction–diffusion equation which is parameterized by a sufficiently small parameter \(\varepsilon >0\). We consider the case that the noise is a space–time white noise multiplied by \(\varepsilon ^\gamma a(x)\) where the function a(x) is a smooth function which has compact support. First, we show a generation of interfaces for a one-dimensional stochastic Allen–Cahn equation with general initial values. We prove that interfaces are generated in time of order \(O(\varepsilon |\log \varepsilon |)\). After the generation of interfaces, we connect it to the motion of interfaces which was investigated by Funaki (Probab Theory Relat Fields 102(2):221–288, 1995) for special initial values. Funaki (Probab Theory Relat Fields 102(2):221–288, 1995) proved that the interface moved in a proper time scale obeying a certain stochastic differential equation (SDE) if the interface formed at the initial time. We take the time scale of order \(O(\varepsilon ^{-2\gamma - \frac{1}{2}})\). This time scale is the same as that of Funaki (Probab Theory Relat Fields 102(2):221–288, 1995) and interface moves in this time scale obeying some SDE with high probability.  相似文献   

5.
We describe an Aldous–Hoover-type characterization of random relational structures that are exchangeable relative to a fixed structure which may have various equivalence relations. Our main theorem gives the common generalization of the results on relative exchangeability due to Ackerman (Representations of \(\text {Aut}(\mathcal {M})\)-invariant measures: part I, 2015. arXiv:1509.06170) and Crane and Towsner (Relatively exchangeable structures, 2015) and hierarchical exchangeability results due to Austin and Panchenko (Probab Theory Relat Fields 159(3–4):809–823, 2014).  相似文献   

6.
Building on the seminal work by Shaked and Shanthikumar (Adv Appl Probab 20:427–446, 1988a; Stoch Process Appl 27:1–20, 1988b), Denuit et al. (Eng Inf Sci 13:275–291, 1999; Methodol Comput Appl Probab 2:231–254, 2000; 2001) studied the stochastic s-increasing convexity properties of standard parametric families of distributions. However, the analysis is restricted there to a single parameter. As many standard families of distributions involve several parameters, multivariate higher-order stochastic convexity properties also deserve consideration for applications. This is precisely the topic of the present paper, devoted to stochastic \((s_1,s_2,\ldots ,s_d)\)-increasing convexity of distribution families indexed by a vector \((\theta _1,\theta _2,\ldots ,\theta _d)\) of parameters. This approach accounts for possible correlation in multivariate mixture models.  相似文献   

7.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

8.
Kim (Arch Math (Basel) 79(3):208–215, 2002) constructs multilinear differential operators for Hermitian Jacobi forms and Hermitian modular forms. However, her work relies on incorrect actions of differential operators on spaces of Hermitian Jacobi forms and Hermitian modular forms. In particular, her results are incorrect if the underlying field is the Gaussian number field. We consider more general spaces of Hermitian Jacobi forms and Hermitian modular forms over \(\mathbb {Q}(i)\), which allow us to correct the corresponding results in Kim (2002).  相似文献   

9.
Predicting rare events, such as high level up-crossings, for spatio-temporal processes plays an important role in the analysis of the occurrence and impact of potential catastrophes in, for example, environmental settings. Designing a system which predicts these events with high probability, but with few false alarms, is clearly desirable. In this paper an optimal alarm system in space over time is introduced and studied in detail. These results generalize those obtained by de Maré (Ann. Probab. 8, 841–850, 1980) and Lindgren (Ann. Probab. 8, 775–792, 1980, Ann. Probab. 13, 804–824, 1985) for stationary stochastic processes evolving in continuous time and are applied here to stationary Gaussian random fields.  相似文献   

10.
We consider affine Markov processes taking values in convex cones. In particular, we characterize all affine processes taking values in irreducible symmetric cones in terms of certain Lévy–Khintchine triplets. This is the natural, coordinate-free formulation of the theory of Wishart processes on positive semidefinite matrices, as put forward by Bru (J Theor Probab 4(4):725–751, 1991) and Cuchiero et al. (Ann Appl Probab 21(2):397–463, 2011), in the more general context of symmetric cones, which also allows for simpler, alternative proofs.  相似文献   

11.
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of positive linear functionals (states) (Fragoulopoulou et al., J Math Anal Appl 388(2):1180–1193, 2012; Trapani and Triolo, Stud Math 184(2):133–148, 2008; Trapani and Triolo, Rend Circolo Mat Palermo 59:295–302, 2010; La Russa and Triolo, J Oper Theory, 69:2, 2013; Triolo, J Pure Appl Math, 43(6):601–617, 2012). In this paper, a new condition is given in an attempt to provide a extension of the non commutative integration.  相似文献   

12.
The purpose of this erratum is to correct the assumptions in Theorem 2.10 of [2] (Kim in J Theor Probab 22:220–238, 2009).  相似文献   

13.
This note continues our previous work on special secant defective (specifically, conic connected and local quadratic entry locus) and dual defective manifolds. These are now well understood, except for the prime Fano ones. Here we add a few remarks on this case, completing the results in our papers (Russo in Math Ann 344:597–617, 2009; Ionescu and Russo in Compos Math 144:949–962, 2008; Ionescu and Russo in J Reine Angew Math 644:145–157, 2010; Ionescu and Russo in Am J Math 135:349–360, 2013; Ionescu and Russo in Math Res Lett 21:1137–1154, 2014); see also the recent book (Russo, On the Geometry of Some Special Projective Varieties, Lecture Notes of the Unione Matematica Italiana, Springer, 2016).  相似文献   

14.
In a series of papers (J Phys A 44:365304, 2011; Complex Anal Oper Theory 7:1299–1310, 2013; J Math Pures Appl 99:165–173, 2013; J Math Pures Appl 103:522–534, 2015), we have investigated some mathematical properties of superoscillating sequences in one variable, and their persistence in time. In this paper we study the notion of superoscillation in several variables and we show how to construct examples of sequences that exhibit this property.  相似文献   

15.
We prove a sharp pinching estimate for immersed mean convex solutions of mean curvature flow which unifies and improves all previously known pinching estimates, including the umbilic estimate of Huisken (J Differ Geom 20(1):237–266, 1984), the convexity estimates of Huisken–Sinestrari (Acta Math 183(1):45–70, 1999) and the cylindrical estimate of Huisken–Sinestrari (Invent Math 175(1):137–221, 2009; see also Andrews and Langford in Anal PDE 7(5):1091–1107, 2014; Huisken and Sinestrari in J Differ Geom 101(2):267–287, 2015). Namely, we show that the curvature of the solution pinches onto the convex cone generated by the curvatures of any shrinking cylinder solutions admitted by the initial data. For example, if the initial data is \((m+1)\)-convex, then the curvature of the solution pinches onto the convex hull of the curvatures of the shrinking cylinders \(\mathbb {R}^m\times S^{n-m}_{\sqrt{2(n-m)(1-t)}}\), \(t<1\). In particular, this yields a sharp estimate for the largest principal curvature, which we use to obtain a new proof of a sharp estimate for the inscribed curvature for embedded solutions (Brendle in Invent Math 202(1):217–237, 2015; Haslhofer and Kleiner in Int Math Res Not 15:6558–6561, 2015; Langford in Proc Am Math Soc 143(12):5395–5398, 2015). Making use of a recent idea of Huisken–Sinestrari (2015), we then obtain a series of sharp estimates for ancient solutions. In particular, we obtain a convexity estimate for ancient solutions which allows us to strengthen recent characterizations of the shrinking sphere due to Huisken–Sinestrari (2015) and Haslhofer–Hershkovits (Commun Anal Geom 24(3):593–604, 2016).  相似文献   

16.
Consider a multidimensional obliquely reflected Brownian motion in the positive orthant, or, more generally, in a convex polyhedral cone. We find sufficient conditions for existence of a stationary distribution and convergence to this distribution at an exponential rate, as time goes to infinity, complementing the results of Dupuis and Williams (Ann Probab 22(2):680–702, 1994) and Atar et al. (Ann Probab 29(2):979–1000, 2001). We also prove that certain exponential moments for this distribution are finite, thus providing a tail estimate for this distribution. Finally, we apply these results to systems of rank-based competing Brownian particles, introduced in Banner et al. (Ann Appl Probab 15(4):2296–2330, 2005).  相似文献   

17.
The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method \(\alpha \)-branch-and-bound (\(\alpha \)BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with \(\epsilon \)-convergence for any \(\mathcal {C}^2\)-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the \(\alpha \)BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) \(\alpha \)BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) \(\alpha \)BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.  相似文献   

18.
We provide two new characterizations of the Takagi function as the unique bounded solution of some systems of two functional equations. The results are independent of those obtained by Kairies (Wy? Szko? Ped Krakow Rocznik Nauk Dydakt Prace Mat 196:73–82, 1998), Kairies (Aequ Math 53:207–241, 1997), Kairies (Aequ Math 58:183–191, 1999) and Kairies et al. (Rad Mat 4:361–374, 1989; Errata, Rad Mat 5:179–180, 1989).  相似文献   

19.
We study convergence in law of partial sums of linear processes with heavy-tailed innovations. In the case of summable coefficients, necessary and sufficient conditions for the finite dimensional convergence to an \(\alpha \)-stable Lévy Motion are given. The conditions lead to new, tractable sufficient conditions in the case \(\alpha \le 1\). In the functional setting, we complement the existing results on \(M_1\)-convergence, obtained for linear processes with nonnegative coefficients by Avram and Taqqu (Ann Probab 20:483–503, 1992) and improved by Louhichi and Rio (Electr J Probab 16(89), 2011), by proving that in the general setting partial sums of linear processes are convergent on the Skorokhod space equipped with the \(S\) topology, introduced by Jakubowski (Electr J Probab 2(4), 1997).  相似文献   

20.
In this short note, we generalized an energy estimate due to Malchiodi–Martinazzi (J Eur Math Soc 16:893–908, 2014) and Mancini–Martinazzi (Calc Var 56:94, 2017). As an application, we used it to reprove existence of extremals for Trudinger–Moser inequalities of Adimurthi–Druet type on the unit disc. Such existence problems in general cases had been considered by Yang  (Trans Am Math Soc 359:5761–5776, 2007; J Differ Equ 258:3161–3193, 2015) and Lu–Yang (Discrete Contin Dyn Syst 25:963–979, 2009) by using another method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号