共查询到20条相似文献,搜索用时 11 毫秒
1.
Jie Zhao Lizhong Hu Zhaoyang Wang Zhijun Wang Heqiu Zhang Yu Zhao Xiuping Liang 《Journal of Crystal Growth》2005,280(3-4):455-461
Epitaxial ZnO thin films have been grown on Si(1 1 1) substrates at temperatures between 550 and 700 °C with an oxygen pressure of 60 Pa by pulsed laser deposition (PLD). A ZnO thin film deposited at 500 °C in no-oxygen ambient was used as a buffer layer for the ZnO growth. In situ reflection high-energy electron diffraction (RHEED) observations show that ZnO thin films directly deposited on Si are of a polycrystalline structure, and the crystallinity is deteriorated with an increase of substrate temperature as reflected by the evolution of RHEED patterns from the mixture of spots and rings to single rings. In contrast, the ZnO films grown on a homo-buffer layer exhibit aligned spotty patterns indicating an epitaxial growth. Among the ZnO thin films with a buffer layer, the film grown at 650 °C shows the best structural quality and the strongest ultraviolet (UV) emission with a full-width at half-maximum (FWHM) of 86 meV. It is found that the ZnO film with a buffer layer has better crystallinity than the film without the buffer layer at the same substrate temperature, while the film without the buffer layer shows a more intense UV emission. Possible reasons and preventive methods are suggested to obtain highly optical quality films. 相似文献
2.
R. Deng B. Yao Y.F. Li T. Yang B.H. Li Z.Z. Zhang C.X. Shan J.Y. Zhang D.Z. Shen 《Journal of Crystal Growth》2010,312(11):1813-1816
Ag-doped ZnO (ZnO:Ag) thin films were deposited on quartz substrates by radio frequency magnetron sputtering technique. The influence of oxygen/argon ratio on structural, electrical and optical properties of ZnO:Ag films has been investigated. ZnO:Ag films gradually transform from n-type into p-type conductivity with increasing oxygen/argon ratio. X-ray photoelectron spectroscopy measurement indicates that Ag substitutes Zn site (AgZn) in the ZnO:Ag films, acting as acceptor, and being responsible for the formation of p-type conductivity. The presence of p-type ZnO:Ag under O-rich condition is attributed to the depression of the donor defects and low formation energy of AgZn acceptor. The I–V curve of the p-ZnO:Ag/n-ZnO homojunction shows a rectification characteristic with a turn-on voltage of ∼7 V. 相似文献
3.
J.S. Liu C.X. Shan S.P. Wang F. Sun B. Yao D.Z. Shen 《Journal of Crystal Growth》2010,312(20):2861-2864
Single-crystalline ZnO films have been grown on a-plane sapphire in plasma assisted molecular beam epitaxy by introducing a high-temperature ZnO buffer layer. The residual electron concentration of the films can be lowered to 1.5×1016 cm−3, comparable with the best value ever reported for ZnO films grown on a rare and costly substrate of ScAlMgO4. A 3×3 reconstruction has been observed on the films grown in this route, which reveals that the films have very smooth surface. X-ray phi-scan spectrum of the films shows six peaks with 60° intervals, and two-dimensional X-ray diffraction datum indicates the single-crystalline nature of the films. Low temperature photoluminescence spectrum of the films shows a dominant free exciton emission and five phonon replicas, confirming the high quality of the films. 相似文献
4.
This paper investigates preparation of CaSeS thin films using hot-wall epitaxy. These films can be grown epitaxially on cleaved BaF2(1 1 1) at a substrate temperature of 873 K by tailoring the VI/II flux ratio vaporized from Ca and SeS resources. The optical absorption edge of these films thus tailored can be observed clearly, shifting toward higher photon energy with increasing S content. In particular, the energy band gap of CaSe0.66S0.34, capable of lattice-matching to InP was found to be 4.69 eV, producing considerably large band gap difference of 3.34 eV between the CaSe0.66S0.34 and InP. 相似文献
5.
S.Y. Pung K.L. Choy Evgeny A. Vinogradov Nadezhda N. Novikova Vladimir A. Yakovlev 《Journal of Crystal Growth》2010,312(15):2220-2225
The structural and infrared properties of the highly (00.2) oriented ZnO film, randomly grown Au-catalyzed ZnO nanowires (NWs) and vertically aligned self-catalyzed ZnO NWs were compared. In the XRD analysis, (0 0 2) diffraction intensity of self-catalyzed ZnO NWs was enhanced mainly attributed to the preferential growth of NWs in [0 0 0 1] as compared to the ZnO film and the randomly grown Au-catalyzed ZnO NWs. The high UV-to-green emission ratio of self-catalyzed ZnO NWs in room temperature PL measurement indicates that they had a better crystal quality as compared to Au-catalyzed ZnO NWs and ZnO film. Infrared spectroscopy has been used to characterize these films and nanowires too. The phonon peak 407 cm−1 which related to the transverse optical (TO) vibrations perpendicular to the optical axis was observed in the IR reflectivity measurements on the highly c-oriented ZnO film. The IR peaks that appeared in the 550–580 cm−1 region of the spectra of the specimens could be assigned to the ZnO NWs as it was not observed in the ZnO film. These peaks were observed in the 550–580 cm−1 region in both s- and p-polarized light for the randomly grown Au-catalyzed ZnO NWs. In contrast, the IR peak at 580 cm−1 was clearly shown in p-polarized light but not in the s-polarized light for vertically aligned ZnO NWs. This indicated that the vibration was polarized along the vertically aligned ZnO NWs. The (00.2) orientation of the ZnO specimens could be identified by comparing the p- and s-polarized IR spectra. 相似文献
6.
B. S. Li Y. C. Liu Z. Z. Zhi D. Z. Shen Y. M. Lu J. Y. Zhang X. W. Fan 《Journal of Crystal Growth》2002,240(3-4):479-483
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively. 相似文献
7.
Heteroepitaxial ZnO films were grown by pulsed laser deposition on various substrates such as GaN-buffered C-Al2O3, C-Al2O3, A-Al2O3, and R-Al2O3. The epitaxy nature of the films was investigated mainly by synchrotron X-ray diffraction. The results showed that the GaN interlayer plays a positive role in growing an unstrained, well-aligned epitaxial ZnO film on the basal plane of Al2O3. Importantly, the ZnO film grown on R-Al2O3 has two differently aligned domains. The dominant (1 1 0) oriented domain has much better alignment in the in-plane direction than the minor portion of (0 0 1) oriented domain, while in the out-of-plane direction the two domains have almost the same mosaic distribution. 相似文献
8.
High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films 总被引:4,自引:0,他引:4
X. T. Zhang Y. C. Liu Z. Z. Zhi J. Y. Zhang Y. M. Lu W. Xu D. Z. Shen G. Z. Zhong X. W. Fan X. G. Kong 《Journal of Crystal Growth》2002,240(3-4):463-466
High quality zinc oxide (ZnO) films were obtained by thermal oxidation of high quality ZnS films. The ZnS films were deposited on a Si substrate by a low-pressure metalorganic chemical vapor deposition technique. X-ray diffraction spectra indicate that high quality ZnO films possessing a polycrystalline hexagonal wurtzite structure with preferred orientation of (0 0 2) were obtained. A fourth order LO Raman scattering was observed in the films. In photoluminescence (PL) measurements, a strong PL with a full-width at half-maximum of 10 nm around 380 nm was obtained for the samples annealed at 900°C at room temperature. The maximum PL intensity ratio of the UV emission to the deep-level emission is 28 at room temperature, providing evidence of the high quality of the nanocrystalline ZnO films. 相似文献
9.
The high dislocation density (2×107/cm2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×106/cm2 was achieved by optimizing the growth conditions and annealing the samples in situ. This finding was corroborated by high-resolution X-ray diffraction, atomic force microscopy, photoluminescence and ellipsometry measurements. 相似文献
10.
C. Mauder B. Reuters L. Rahimzadeh Khoshroo M.V. Rzheutskii E.V. Lutsenko G.P. Yablonskii J.F. Woitok M. Heuken H. Kalisch R.H. Jansen 《Journal of Crystal Growth》2010,312(11):1823-1827
The anisotropic film properties of m-plane GaN deposited by metal organic vapour phase epitaxy (MOVPE) on LiAlO2 substrates are investigated. To study the development of layer properties during epitaxy, the total film thickness is varied between 0.2 and 1.7 μm. A surface roughening is observed caused by the increased size of hillock-like features. Additionally, small steps which are perfectly aligned in (1 1 −2 0) planes appear for samples with a thickness of ∼0.5 μm and above. Simultaneously, the X-ray rocking curve (XRC) full width at half maximum (FWHM) values become strongly dependent on incident X-ray beam direction beyond this critical thickness. Anisotropic in-plane compressive strain is initially present and gradually relaxes mainly in the [1 1 −2 0] direction when growing thicker films. Low-temperature photoluminescence (PL) spectra are dominated by the GaN near-band-edge peak and show only weak signal related to basal plane stacking faults (BSF). The measured background electron concentration is reduced from ∼1020 to ∼1019 cm−3 for film thicknesses of 0.2 μm and ∼1 μm while the electron mobilities rise from ∼20 to ∼130 cm2/V s. The mobilities are significantly higher in [0 0 0 1] direction which we explain by the presence of extended planar defects in the prismatic plane. Such defects are assumed to be also the cause for the observed surface steps and anisotropic XRC broadening. 相似文献
11.
Substrate temperature rises of over 200 °C have been observed for growth of InN and In-rich InGaN on GaAs substrates. We present a model to show that it is not the narrow bandgap that is responsible for the large temperature rises observed during growth of InN, but the large bulk background carrier concentration. We also show how the substrate temperature rise during growth increases as a function of increasing indium composition and the effects of controlling the substrate temperature on film quality. 相似文献
12.
This paper reports high-temperature (305–523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu2−xSe) and copper (II) selenide (Cu3Se2) thin films. Cu2−xSe and Cu3Se2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu2−xSe and Cu3Se2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage. 相似文献
13.
A. Hossain A.E. Bolotnikov G.S. Camarda Y. Cui G. Yang K-H. Kim R. Gul L. Xu R.B. James 《Journal of Crystal Growth》2010,312(11):1795-1799
We explored some unique defects in a batch of cadmium zinc telluride (CdZnTe) crystals, along with dislocations and Te-rich decorated features, revealed by chemical etching. We extensively investigated these distinctive imperfections in the crystals to identify their origin, dimensions, and distribution in the bulk material. We estimated that these features ranged from 50 to 500 μm in diameter, and their depth was about ∼300 μm. The density of these features ranged between 2×102 and 1×103 per cm3. We elaborated a model of them and projected their effect on charge collection and spectral response. In addition, we fabricated detectors with these defective crystals and acquired fine details of charge-transport phenomena over the detectors’ volume using a high-spatial resolution (25 μm) X-ray response mapping technique. We related the results to better understand the defects and their influence on the charge-transport properties of the devices. The role of the defects was identified by correlating their signatures with the findings from our theoretical model and our experimental data. 相似文献
14.
High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn 总被引:16,自引:0,他引:16
S. J. Chen Y. C. Liu J. G. Ma D. X. Zhao Z. Z. Zhi Y. M. Lu J. Y. Zhang D. Z. Shen X. W. Fan 《Journal of Crystal Growth》2002,240(3-4):467-472
In this paper, we report the preparation of nanocrystalline ZnO thin films on Si (1 0 0) substrates using a simple method, in which a resistive thermal evaporation of Zn and a two-step annealing process were employed. The aim of the first annealing step in an oxygen ambient at 300°C for 2 h is to form ZnO layers on the surface of the Zn films to prevent the diffusion of the metallic Zn from the films during the high-temperature annealing process. To obtain high-quality ZnO films, a high-temperature annealing step was performed at temperature in the range of 600–900°C. The effects of the annealing temperature on the photoluminescence (PL) and orientation of ZnO nanocrystalline thin films were studied. A very strong near-band-edge emission around 375 nm with a full-width at half-maximum of 105 meV and a relatively weak emission around 510 nm related to deep-level defects were observed, which indicated that high-quality ZnO films have been obtained. 相似文献
15.
James S. Im Monica Chahal P.C. van der Wilt U.J. Chung G.S. Ganot A.M. Chitu Naoyuki Kobayashi K. Ohmori A.B. Limanov 《Journal of Crystal Growth》2010,312(19):2775-2778
Mixed-phase solidification (MPS) is a new beam-induced solidification method that can produce large-grained and highly (1 0 0)-surface textured polycrystalline Si films on SiO2. The grains resulting from this mixed-phase solidification (MPS) method, which was conceived based on a well-known phenomenon of coexisting solid–liquid regions in radiatively melted Si films, are found to be essentially devoid of various intragrain defects that always plague, and subsequently degrade the utility of large-grained Si films previously obtained using other crystallization techniques. It is experimentally shown that multiple exposures are required in order to generate such a polycrystalline microstructure from an initial amorphous precursor. The observed trends are conceptually explained in terms of the melt being initiated primarily at grain boundaries in polycrystalline films, and melting and solidification subsequently proceeding laterally at interface-location specific rates as determined by the local thermodynamic factors, which include the anisotropic surface and interfacial energies of the grains, and the unusual local thermal profile—all transpiring within a near-equilibrium but nonisothermal and dynamic environment that needs to address the thermal and stability requirements associated with the coexisting solid–liquid regions. 相似文献
16.
Bi3.25Na2.25Ti3O12 thin films were prepared on p-Si(1 1 1) substrate by a metalorganic solution decomposition (MOSD) method. The structural characteristic and crystallization of the films were examined by X-ray diffraction. The current–voltage characteristic shows ohmic conductivity in the lower voltage range and space-charge-limited conductivity in the higher voltage range. The dielectric constant is 53 at a frequency of 100 kHz at room temperature and the dissipation factor exists at a minimal value of 0.02 at a frequency of 200 kHz. The retention time estimated by measuring capacitance is about 106 s. Nonhysteretic C–V curves at various frequencies were also collected. 相似文献
17.
M.A. Moram S.V. Novikov A.J. Kent C. Nrenberg C.T. Foxon C.J. Humphreys 《Journal of Crystal Growth》2008,310(11):2746-2750
A series of 100-oriented ScN films was grown under N-rich conditions on 100-oriented Si using different Sc fluxes. The ScN films grew in an epitaxial cube-on-cube orientation, with [0 0 1]ScN//[0 0 1]Si and [1 0 0]ScN//[1 0 0]Si, despite the high (11%) lattice mismatch between ScN and Si. The film grain size increases and the film ω-FWHM decreases with increasing Sc flux, but the film roughness increases. Films grown under similar conditions on 111-oriented Si resulted in mixed 111 and 100 orientations, indicating that the 100 orientation is favoured both due to texture inheritance from the substrate and due to the growth conditions used. 相似文献
18.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min. 相似文献
19.
20.
Tip-growth and base-growth modes of Au-catalyzed zinc oxide nanowires (ZnO NWs) were synthesized on Au-film pre-deposited silicon substrates using Chemical Vapor Deposition (CVD) technique. The diameter of tip-growth Au-catalyzed ZnO NWs was proportional to the Au film thickness, whereas the areal density of these NWs was inversely proportional to the Au film thickness. It would be more appropriate to explain the growth of Au-catalyzed ZnO NWs by a combination of Vapor–Liquid–Solid and Vapor–Solid (VLS–VS) mechanisms instead of the conventional VLS mechanism, regardless of tip-growth or base-growth mode of Au-catalyzed ZnO NWs. The competition between the VLS and VS mechanism in the effectiveness of capturing the adsorbed Zn and O atoms would determine the final morphology of ZnO NWs. In addition, Au catalyst promoted the growth rate of NWs as compared to the self-catalyzed ZnO NWs. 相似文献