首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Epitaxial lateral overgrowth was applied to a-plane GaN on r-plane sapphire using SiO2 stripe masks oriented parallel to [0 1¯ 1 1]. Coalescence and defect distribution was studied using scanning electron microscopy and cathodoluminescence. Defects, i.e., threading dislocations and basal plane stacking faults from the template propagate into the overgrown layer through the mask openings. Stacking faults spread into the whole overgrown layer, whereas threading dislocations are laterally confined in the region above the mask where a part of them is terminated at the inclined coalescence boundary. Lateral overgrowth and dislocation termination at the coalescence boundary leads to an improvement in luminescence intensity and crystal quality, in comparison to the template. The measured XRD rocking curve FWHM were 453″ with incidence along the [0 0 0 1] c-direction and 280″ with incidence along the [0 1 1¯ 0] m-direction.  相似文献   

2.
We have succeeded in effectively stopping the propagation of basal stacking faults in (1 1 −2 2) semipolar GaN films on sapphire using an original epitaxial lateral overgrowth process. The growth conditions were chosen to enhance the growth rate along the [0 0 0 1] inclined direction. Thus, the crystal expands laterally until growth above the a-facet of the adjacent crystal seed, where the basal stacking faults emerge. The growth anisotropy was monitored using scanning electron microscopy. The faults filtering and improvement of crystalline quality were attested by transmission electron microscopy, X-ray diffraction and low temperature photoluminescence, which exhibits high intensity band-edge emission with low stacking faults related emission.  相似文献   

3.
Single crystalline ZnO film was grown on (1 1 1) Si substrate through employing an oxidized CrN buffer layer by plasma-assisted molecular beam epitaxy. Single crystalline characteristics were confirmed from in-situ reflection high energy electron diffraction, X-ray pole figure measurement, and transmission electron diffraction pattern, consistently. Epitaxial relationship between ZnO film and Si substrate is determined to be (0 0 0 1)ZnO‖(1 1 1)Si and [1 1 2¯ 0]ZnO‖[0 1 1]Si. Full-width at half-maximums (FWHMs) of (0 0 0 2) and (1 0 1¯ 1) X-ray rocking curves (XRCs) were 1.379° and 3.634°, respectively, which were significantly smaller than the FWHMs (4.532° and 32.8°, respectively) of the ZnO film grown directly on Si (1 1 1) substrate without any buffer. Total dislocation density in the top region of film was estimated to be ∼5×109 cm−2. Most of dislocations have a screw type component, which is different from the general cases of ZnO films with the major threading dislocations with an edge component.  相似文献   

4.
Nonpolar (1 1–2 0) a-plane GaN films have been grown using the multi-buffer layer technique on (1–1 0 2) r-plane sapphire substrates. In order to obtain epitaxial a-plane GaN films, optimized growth condition of the multi-buffer layer was investigated using atomic force microscopy, high resolution X-ray diffraction, and transmission electron microscopy measurements. The experimental results showed that the growth conditions of nucleation layer and three-dimensional growth layer significantly affect the crystal quality of subsequently grown a-plane GaN films. At the optimized growth conditions, omega full-width at half maximum values of (11–20) X-ray rocking curve along c- and m-axes were 430 and 530 arcsec, respectively. From the results of transmission electron microscopy, it was suggested that the high crystal quality of the a-plane GaN film can be obtained from dislocation bending and annihilation by controlling of the island growth mode.  相似文献   

5.
Structural and optical properties of nonpolar a-plane ZnO films grown with different II/VI ratios on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy were investigated. Even by increasing the II/VI ratio across the stoichiometric flux condition a consistent surface morphology of striated stripes along the ZnO 〈0 0 0 1〉 direction without any pit formation was observed, which is contrary to polar c-plane ZnO films. Root mean square surface roughness, full width at half maximum values of X-ray rocking curves, defect densities, and photoluminescence were changed with the II/VI ratio. The sample grown with stoichiometric flux condition showed the lowest value of rms roughness, the smallest threading dislocation and stacking fault densities of ∼4.7×108 cm−2 and ∼9.5×104 cm−1, respectively, and the highest intensity of DoX peak. These results imply that the stoichiometric flux growth condition is suitable to obtain superior structural and optical properties compared to other flux conditions.  相似文献   

6.
Microstructures were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in order to clarify the dislocation behavior in AlGaN layers HVPE-grown on a stripe-patterned sapphire (0 0 0 1) substrate. SEM observation revealed very clearly the growth process: if AlGaN starting to grow from the side-wall of patterned substrate develops, a poly-crystalline region is formed up to the top surface of thin film. When the growth from the upper side (terrace) of patterned substrate is predominant, AlGaN becomes a single-crystalline layer with a flat surface. Threading dislocations (TDs) generated from the interface to the terrace propagate upwards, inclining to the wing regions. They are scarcely merged with one another. The AlGaN layer on the patterned substrate with a wider groove has a smaller density of dislocation to be about 1×109 cm−2. There are four types of dislocations: (1) TDs inclining toward 〈1 1¯ 0 0〉 normal to their Burgers vector B; (2) TDs inclining toward 〈2 1¯ 1¯ 0〉 on their slip-plane; (3) TDs inclining largely or horizontal dislocations (HDs) along 〈2 1¯ 1¯ 0〉 and (4) roundly curved HDs lying on (0 0 0 1) plane. Some TDs change the direction of inclination, suggesting that internal stress changed intricately during the growth.  相似文献   

7.
Non-polar (1 1 2¯ 0) a-plane GaN films have been grown by low-pressure metal-organic vapor deposition on r-plane (1 1¯ 0 2) sapphire substrate. We report on an approach of using AlN/AlGaN superlattices (SLs) for crystal quality improvement of a-plane GaN on r-plane sapphire. Using X-ray diffraction and atomic force microscopy measurements, we show that the insertion of AlN/AlGaN SLs improves crystal quality, reduces surface roughness effectively and eliminates triangular pits on the surface completely.  相似文献   

8.
A freestanding m-plane GaN wafer is fabricated by using the hydride vapor-phase epitaxy (HVPE) technique on an aluminum carbide buffer layer on an m-plane sapphire substrate. X-ray pole-figure measurements show a clear m-plane orientation of the GaN surface. The full-width at half-maximum (FWHM) of GaN (1 1¯ 0 0) X-ray rocking curve (XRC) with the scattering vector along the [1 1 2¯ 0] direction is approximately 800 arcsec; this indicates good crystallinity. On the other hand, the FWHM for the case in which the scattering vector is oriented along the [0 0 0 1] direction is broad; this suggests the influence of structural defects along this direction. In fact, basal plane stacking faults (BSF) with a density of approximately 3×105 cm−1 is observed by transmission electron microscopy (TEM). The preparation of a 45-mm-diameter m-plane GaN wafer due to spontaneous separation of the GaN layer from the sapphire substrate is demonstrated.  相似文献   

9.
The high dislocation density (2×107/cm2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×106/cm2 was achieved by optimizing the growth conditions and annealing the samples in situ. This finding was corroborated by high-resolution X-ray diffraction, atomic force microscopy, photoluminescence and ellipsometry measurements.  相似文献   

10.
We succeeded in growing high-crystalline-quality thick (1 0 1¯ 1¯) Ga0.92In0.08N films on a grooved (1 0 1¯ 1¯) GaN/(1 0 1¯ 2¯) 4H-SiC underlying layer. We also fabricated GaInN/GaN multiple quantum wells (MQWs) with a peak wavelength of 580 nm on a high-crystalline-quality thick GaInN film. The photoluminescence intensity of the MQWs is about six times higher than that of MQWs grown on planar GaN and twice as high as that of MQWs grown on a GaN underlying layer having the same grooved structure.  相似文献   

11.
The crystalline, surface, and optical properties of the (1 0 1¯ 3¯) semipolar GaN directly grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) were investigated. It was found that the increase of V/III ratio led to high quality (1 0 1¯ 3¯) oriented GaN epilayers with a morphology that may have been produced by step-flow growth and with minor evidence of anisotropic crystalline structure. After etching in the mixed acids, the inclined pyramids dominated the GaN surface with a density of 2×105 cm−2, revealing the N-polarity characteristic. In the low-temperature PL spectra, weak BSF-related emission at 3.44 eV could be observed as a shoulder of donor-bound exciton lines for the epilayer at high V/III ratio, which was indicative of obvious reduction of BSFs density. In comparison with other defect related emissions, a different quenching behavior was found for the 3.29 eV emission, characterized by the temperature-dependent PL measurement.  相似文献   

12.
This paper reports a study of the effect of NH3 flow rate on m-plane GaN growth on m-plane SiC with an AlN buffer layer. It is found that a reduced NH3 flow rate during m-plane GaN growth can greatly improve the recovery of in situ optical reflectance and the surface morphology, and narrow down the on-axis (1 0 1¯ 0) X-ray rocking curve (XRC) measured along the in-plane a-axis. The surface striation along the in-plane a-axis, a result of GaN island coalescence along the in-plane c-axis, strongly depends on the NH3 flow rate, an observation consistent with our recent study of kinetic Wulff plots. The pronounced broadening of the (1 0 1¯ 0) XRC measured along the c-axis is attributed to the limited lateral coherence length of GaN domains along the c-axis, due to the presence of a high density of basal-plane stacking faults, most of which are formed at the GaN/AlN interface, according to transmission electron microscopy.  相似文献   

13.
ZnO nanorod arrays are grown on a-plane GaN template/r-plane sapphire substrates by hydrothermal technique. Aqueous solutions of zinc nitrate hexahydrate and hexamethylenetetramine were employed as growth precursors. Electron microscopy and X-ray diffraction measurements were carried out for morphology, phase and growth orientation analysis. Single crystalline nanorods were found to have off-normal growth and showed well-defined in-plane epitaxial relationship with the GaN template. The 〈0 0 0 1〉 axis of the ZnO nanorods were observed to be parallel to the 〈1 0 1¯ 0〉 of the a-plane GaN layer. Optical property of the as-grown ZnO nanorods was analyzed by room temperature photoluminescence measurements.  相似文献   

14.
Redistribution behavior of magnesium (Mg) in the N-terminated (1 1¯ 0 1) gallium nitride (GaN) has been investigated. A nominally undoped GaN layer was grown on a heavily Mg-doped GaN template by metalorganic vapor-phase epitaxy (MOVPE). Mg dopant profiles were measured by secondary ion mass spectrometry (SIMS) analysis. A slow decay of the Mg concentration was observed in the nominally undoped GaN layer due to the surface segregation. The calculated decay lengths of the (1 1¯ 0 1) GaN are ∼75–85 nm/decade. These values are shorter than the decay length determined in the sample grown on the Ga-terminated (0 0 0 1) GaN. This result indicates that Mg exhibited weak surface segregation in the (1 1¯ 0 1) GaN as compared to the (0 0 0 1) GaN. The weak surface segregation is in agreement with the high efficiency of Mg incorporation on the (1 1¯ 0 1) face. The high density of hydrogen was obtained in the (1 1¯ 0 1) GaN, which might enhance the Mg incorporation.  相似文献   

15.
16.
The hydride-vapour-phase-epitaxial (HVPE) growth of semi-polar (1 1 2¯ 2)GaN is attempted on a GaN template layer grown on a patterned (1 1 3) Si substrate. It is found that the chemical reaction between the GaN grown layer and the Si substrate during the growth is suppressed substantially by lowering the growth temperatures no higher than 900 °C. And the surface morphology is improved by decreasing the V/III ratio. It is shown that a 230-μm-thick (1 1 2¯ 2)GaN with smooth surface is obtained at a growth temperature of 870 °C with V/III of 14.  相似文献   

17.
We have investigated the unintentional impurities, oxygen and carbon, in GaN films grown on c-plane, r-plane as well as m-plane sapphire by metal-organic chemical vapor deposition. The GaN layer was analyzed by secondary ion mass spectroscopy. The different trend of the incorporation of oxygen and carbon has been explained in the polar (0 0 0 1), nonpolar (1 1 2¯ 0) and semipolar (1 1 2¯ 2) GaN by a combination of the atom bonding structure and the origin direction of the impurities. Furthermore, it has been found that there is a stronger yellow luminescence (YL) in GaN with higher concentration of carbon, suggesting that C-involved defects are originally responsible for the YL.  相似文献   

18.
We demonstrate hexagonal boron nitride (h-BN) epitaxial growth on Ni(1 1 1) substrate by molecular beam epitaxy (MBE) at 890 °C. Elemental boron evaporated by an electron-beam gun and active nitrogen generated by a radio-frequency (RF) plasma source were used as the group-III and -V sources, respectively. Reflection high-energy electron diffraction revealed a streaky (1×1) pattern, indicative of an atomically flat surface in the ongoing growth. Correspondingly, atomic force microscopy images exhibit atomically smooth surface of the resulting h-BN film. X-ray diffraction characterization confirmed the crystallinity of the epitaxial film to be h-BN, and its X-ray rocking curve has a full-width at half-maximum of 0.61°, which is the narrowest ever reported for h-BN thin film. The epitaxial alignments between the h-BN film and the Ni substrate were determined to be [0 0 0 1]h−BN∥[1 1 1]Ni, [1 1 2¯ 0]h−BN∥[1¯ 1 0]Ni, and [1 1¯ 0 0]h−BN∥[1¯ 1¯ 2]Ni.  相似文献   

19.
Two-step selective epitaxy (SAG/ELO) of (1 1 2¯ 2)GaN on (1 1 3)Si substrate is studied to reduce the defect density in the epitaxial lateral overgrowth. The first SAG/ELO is to prepare a (1 1 2¯ 2)GaN template on a (1 1 3)Si and the second SAG/ELO is to get a uniform (1 1 2¯ 2)GaN. It is found that the reduction of the defect density is improved by optimizing the mask configuration in the second SAG/ELO. The minimum dark spot density obtained is 3×107/cm2, which is two orders of magnitude lower than that found in a (0 0 0 1)GaN grown on (1 1 1)Si.  相似文献   

20.
The mechanism of nitridation of (0 0 1) GaAs surface using RF-radical source was systematically studied with changing substrate temperature, nitridation time and supplying As molecular beam. It was found from atomic forth microscopy (AFM) measurements that supplying As is very important to suppress the re-evaporation of As atoms and to keep the surface smooth. Reflection high-energy electron diffraction (RHEED) measurements shows that surface lattice constant (SLC) of GaAs of 0.565 nm decreases with increasing the substrate temperature and that it finally relaxes to the value of c-GaN of 0.452 nm, at 570 °C in both [1 1 0] and [1¯ 1 0] directions without concerning with the supply of As molecular beam. But, in the medium temperature range (between 350 and 520 °C), SLC of [1 1 0] direction was smaller than that of [1¯ 1 0] direction. This suggests a relation between the surface structure and the relaxing mechanism of the lattice. The valence band discontinuity between the nitridated layer and the GaAs layer was estimated by using X-ray photoemission spectroscopy (XPS). It was between 1.7 and 2.0 eV, which coincides well with the reported value of c-GaN of 1.84 eV. This suggests that the fabricated GaN layer was in cubic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号