首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystalline ZnO film was grown on (1 1 1) Si substrate through employing an oxidized CrN buffer layer by plasma-assisted molecular beam epitaxy. Single crystalline characteristics were confirmed from in-situ reflection high energy electron diffraction, X-ray pole figure measurement, and transmission electron diffraction pattern, consistently. Epitaxial relationship between ZnO film and Si substrate is determined to be (0 0 0 1)ZnO‖(1 1 1)Si and [1 1 2¯ 0]ZnO‖[0 1 1]Si. Full-width at half-maximums (FWHMs) of (0 0 0 2) and (1 0 1¯ 1) X-ray rocking curves (XRCs) were 1.379° and 3.634°, respectively, which were significantly smaller than the FWHMs (4.532° and 32.8°, respectively) of the ZnO film grown directly on Si (1 1 1) substrate without any buffer. Total dislocation density in the top region of film was estimated to be ∼5×109 cm−2. Most of dislocations have a screw type component, which is different from the general cases of ZnO films with the major threading dislocations with an edge component.  相似文献   

2.
Double-ended acicular ZnO structure can be synthesized via a hydrothermal process with tetramethylammonium hydroxide and zinc acetate as precursors and polyvinyl alcohol (PVA) as a structure-directing agent. The as-prepared ZnO products show the well crystalline wurtzite structure with growth direction along [0 0 0 1]. For the first time, PVA is found to be employed as a reservoir of Zn2+ ions in the present study, and can control the concentration of Zn2+ in reaction solution, and the acicular morphology can be formed at the two ends of the 1-D ZnO structure, due to the effect of secondary growth that occurs as the sufficient concentration of Zn2+ ions chelated by PVA releasing to the reaction solution. Furthermore, the size of the 1-D ZnO structure can be tuned by different amounts of PVA addition.  相似文献   

3.
The sublimation–recombination crystal growth of bulk yttrium nitride crystals is reported. The YN source material was prepared by reacting yttrium metal with nitrogen at 1200 °C and 800 Torr total pressure. Crystals were produced by subliming this YN from the source zone, and recondensing it from the vapor as crystals at a lower temperature (by 50 °C). Crystals were grown from 2000 to 2100 °C and with a nitrogen pressure from 125 to 960 Torr. The highest rate was 9.64×10−5 mol/h (9.92 mg/h). The YN sublimation rate activation energy was 467.1±21.7 kJ/mol. Individual crystals up to 200 μm in dimension were prepared. X-ray diffraction confirmed that the crystals were rock salt YN, with a lattice constant of 4.88 Å. The YN crystals were unstable in air; they spontaneously converted to yttria (Y2O3) in 2–4 h. A small fraction of cubic yttria was detected in the XRD of a sample exposed to air for a limited time, while non-cubic yttria was detected in the Raman spectra for a sample exposed to air for more than 1 h.  相似文献   

4.
A chemically assisted vapour phase transport (CVT) method is proposed for the growth of bulk ZnO crystals. Thermodynamic computations have confirmed the possibility of using CO as a sublimation activator for enhancing the sublimation rate of the feed material in a large range of pressures (10−3 to 1 atm) and temperatures (800–1200 °C). Growth runs in a specific and patented design yielded single ZnO crystals up to 46 mm in diameter and 8 mm in thickness, with growth rates up to 400 μm/h. These values are compatible with an industrial production rate. N type ZnO crystals (μ=182 cm2/(V s) and n=7 1015 cm−3) obtained by this CVT method (Chemical Vapour Transport) present a high level of purity (10–30 times better than hydrothermal ZnO crystals), which may be an advantage for obtaining p-type doped layers ([Li] and [Al] <10+15 cm−3). Structural (HR-XRD), defect density (EPD), electrical (Hall measurements) and optical (photoluminescence) properties are presented.  相似文献   

5.
Vertically aligned arrays of ZnO nanorod were synthesized on the Au/SiO2/Si(1 0 0) substrate by a simple aqueous solution growth process, without pre-prepared ZnO seed layer. For comparison, glass and SiO2/Si were also used as substrates, and the results show that the Au layer plays a decisive role in orienting the growth of the ZnO nanorod. The effects of other growth parameters, including Zn2+ concentration and growth time, on morphology, density, and orientation of the ZnO nanostructure were also studied and with longer reaction time, a new structure namely ZnO nanotip was obtained. Moreover, the growth mechanism of ZnO nanorod arrays grown on the Au/SiO2/Si substrate was proposed.  相似文献   

6.
Single crystals of rutile-type GeO2 having a structure equivalent to that of TiO2, a well-known photocatalyst, have been grown for the first time in supercritical oxygen at approximately 5 GPa and 3000 K. The obtained crystals exhibit a rectangular hollow tube structure with submicron size (cross section with sides of ∼500 nm, wall thickness of ∼20 nm, and longitudinal length of ∼5 μm). These single crystals were grown within 1 s and along the c-axis surrounded by the (1 1 0) faces. The crystal growth mechanism strongly depends on the growth mechanism of rutile-type oxides, and the extremely short growing time is an important factor in the formation of hollow tube crystals.  相似文献   

7.
Barium chlorapatite [Ba5Cl(PO4)3] and strontium chlorapatite [Sr5Cl(PO4)3] crystals were grown from a sodium chloride flux. The aspect ratios for these crystals were distributed in the range 1–9, and maximum number of crystals was observed in the range 3–4 for both chlorapatite crystals. The contact angle of water on (1 0 1? 0) face of each chlorapatite crystal was observed using a modified Wilhelmy method, where the change of liquid weight was measured instead of the crystal weight. The contact angle depends on the aspect ratio of the crystal. Both the advancing and the receding contact angles showed maximum value when the aspect ratios of the crystals were approximately 4 for both Ba5Cl(PO4)3 and Sr5Cl(PO4)3 crystals. The specific surface free energy of (1 0 1? 0) face was calculated using Neumann’s equation. The (1 0 1? 0) face of the crystals of the aspect ratio 4 has a minimum specific surface free energy, indicating that they have the most stable (1 0 1? 0) face when the aspect ratio is 4.  相似文献   

8.
Spheroidal vaterite CaCO3 composed of irregular nanoparticals have been synthesized by a fast microwave-assisted method. The structures are fabricated by the reaction of Ca(CH3COO)2 with (NH4)2CO3 at 90 °C in ethylene glycol–water mixed solvents without any surfactants. The diameters of the spheroidal vaterite CaCO3 range from 1 to 2 μm, and the average size of the nanoparticals is about 70 nm. Bundle-shaped aragonite and rhombohedral calcite are also obtained by adjusting the experimental parameters. Our experiments show that the ratio of ethylene glycol to water, microwave power, reaction time, and two sources of ammonium ions and acetate anions are key parameters for the fabrication of spheroidal vaterite CaCO3. A possible growth mechanism for the spheroidal structures has been proposed, which suggests that the spheroidal vaterite CaCO3 is formed by an aggregation mechanism.  相似文献   

9.
A simple growth technique capable of growing a variety of zinc oxide (ZnO) nanostructures with record growth rates of 25 μm/s is demonstrated. Visible lengths of ZnO nanowires, nanotubes, comb-like and pencil-like nanostructures could be grown by employing a focused CO2 laser-assisted heating of a sintered ZnO rod in ambient air, in few seconds. For the first time, the growth process of nanowires was videographed, in-situ, on an optical microscope. It showed that ZnO was evaporated and presumably decomposed into Zn and oxygen by laser heating, reforming ZnO nanostructures at places with suitable growth temperatures. Analysis on the representative nanowires shows a rectangular cross-section, with a [0 0 0 1] growth direction. With CO2 laser heating replacing furnace heating used conventionally, and using different reactants and forming gases, this method could be easily adopted for other semiconducting inorganic nanostructures in addition to ZnO.  相似文献   

10.
The bulk single crystals of low-dimensional magnet (CH3)2NH2CuCl3 (DMACuCl3 or MCCL) are grown by a slow evaporation method with different kinds of solvents, different degrees of super-saturation of solution and different temperatures of solution, respectively. Among three kinds of solvent, methanol, alcohol and water, alcohol is found to be the best one for growing MCCL crystals because of its structural similarity to the raw materials and suitable evaporation rate. The best growth temperature is in the vicinity of 35 °C. The problem of the crystals deliquescing in air has been solved through recrystallization process. The crystals are characterized by means of X-ray diffraction, specific heat and magnetic susceptibility.  相似文献   

11.
Oxygen-containing germanium (Ge) single crystals with low density of grown-in dislocations were grown by the Czochralski (CZ) technique from a Ge melt, both with and without a covering by boron oxide (B2O3) liquid. Interstitially dissolved oxygen concentrations in the crystals were determined by the absorption peak at 855 cm−1 in the infrared absorption spectra at room temperature. It was found that oxygen concentration in a Ge crystal grown from melt partially or fully covered with B2O3 liquid was about 1016 cm−3 and was almost the same as that in a Ge crystal grown without B2O3. Oxygen concentration in a Ge crystal was enhanced to be greater than 1017 cm−3 by growing a crystal from a melt fully covered with B2O3; with the addition of germanium oxide powder, the maximum oxygen concentration achieved was 5.5×1017 cm−3. The effective segregation coefficients of oxygen in the present Ge crystal growth were roughly estimated to be between 1.0 and 1.4.  相似文献   

12.
We have investigated the effect of Al on cBN formation in Li3N–hBN system at 5.0 GPa and 1300–1650 °C. Regular cBN single crystals of 0.2–0.5 mm in size were obtained. It appears that the presence of Al in hBN powder facilitates the formation of cBN crystals with regular shape, although it does not have any catalytic action for hBN–cBN phase transformation. With increasing Al concentration, the color of cBN changed darker from amber to black and the threshold temperature for cBN formation became higher. X-ray diffraction and Raman spectroscopy indicate that AlN formed by reaction of Li3N and Al and some B liberated in system.  相似文献   

13.
Single crystals of KInO2 were obtained from a reactive potassium hydroxide flux at 700 °C. KInO2 crystallizes in the R-3m crystal system with a=3.2998(10) Å, c=18.322(10) Å and V=172.78(12) Å3. The crystal structure is isotypic with that of α-NaFeO2 and consists of the (1 1 1) layers being occupied alternately by KO6 and InO6 octahedra. Three different AInO2 structure types are discussed.  相似文献   

14.
Crack-free and transparent Zn2TiO4 single crystals of 4–6 mm in diameter and 30 mm in length have been grown by the optical floating zone method. The powder X-ray diffraction (XRD) results show that the as-grown crystals have the spinel-type Zn2TiO4 structure. XRD2 measurements on Zn2TiO4 wafers cut perpendicular to the growth direction display only one peak at 42.7°, which indicates that the Zn2TiO4 single crystals grow along the 〈4 0 0〉 direction (a-axis). The formation of bubble inclusions was effectively suppressed by lowering rotation rate. Transmission polarized-light microscopy results showed that as-grown crystals were free of low angle grain boundaries.  相似文献   

15.
The growth of fresnoite, Ba2TiSi2O8, by hydrothermal synthesis has led to spontaneous generation of large, (4-5 mm) optically clear crystals from 6 M KF mineralizer solutions. Growth was achieved at relatively low synthesis temperatures (575 °C) comparative to fresnoite synthesis by Czochralski or flux methods. Bulk crystal growth possibilities were explored by transport reactions performed in both fluoride and hydroxide mineralizers with 25-45 °C temperature gradients. Growth rates of 0.14×0.19×0.22 mm3/week were established in 6 M KOH, which is significantly slower than standard hydrothermal rates of 1 mm/week. Although relatively slow, the hydrothermal method has been demonstrated as a synthesis route to high quality single crystals of fresnoite.  相似文献   

16.
As described by Kutoglu (1976 [16]), single crystals of As4S4 (II) phase have been grown using a new two-step synthesis that drastically increases the reproducibility that is attainable in synthetic experiments. First, through photo-induced phase transformation, pararealgar powder is prepared as a precursor instead of AsS melt. Then it is dissolved and recrystallized from CS2 solvent. Results show that single crystals of the As4S4 (II) phase were obtained reproducibly through the dissolution–recrystallization process. Single crystals of As4S4 (II) obtained using this method were translucent and showed a uniform yellow-orange color. The crystal exhibits a platelet-like shape as a thin film with well-developed faces (0 1 0) and (0 1¯ 0). The grown crystals are as large as 0.50×0.50×0.01 mm. They were characterized using powder and single crystal X-ray diffraction techniques to confirm the phase identification and the lattice parameters. The As4S4 (II) phase crystallizes in monoclinic system with cell parameters a=11.202(4) Å, b=9.954(4) Å, c=7.142(4) Å, β=92.81(4)°, V=795.4(6) Å3, which shows good agreement with the former value. Raman spectroscopic studies elucidated the behavior of the substance and the relation among phases of tetra-arsenic tetrasulfide.  相似文献   

17.
ZnMoO4 with a rhombus sheet or flower-like structure, α-ZnMoO4 and needle-like ZnMoO4·0.8 H2O were successfully synthesized by simple hydrothermal crystallization processes with citric acid. ZnMoO4·0.8 H2O was easily synthesized in a shorter reaction time (2 h) at a higher reactant concentration. It gradually transformed into ZnMoO4 with a monoclinic wolframite tungstate structure with an increased reaction time, and pure ZnMoO4 was obtained with a longer reaction time (8 h). Citric acid (CA) played an important role in controlling the morphology of the as-obtained molybdates. The α-ZnMoO4 and ZnMoO4 were synthesized by heating ZnMoO4·0.8 H2O at 130 °C for 4 h and 8 h, respectively, under hydrothermal conditions. With transforming of ZnMoO4·0.8 H2O to α-ZnMoO4 and further to ZnMoO4, the needle-like crystals gradually disappeared and were transformed into crystals with rhombus sheet morphology and then further to pentacle or flower-like crystals that can be ascribed to continuous splitting and growing of the rhombus sheets.  相似文献   

18.
Near-stoichiometric LiTaO3 (SLT) and Zn-doped near-stoichiometric LiTaO3 (Zn:SLT) crystals with 10–15 mm in diameter and 10 mm in length were grown by using TSSG technique with K2O as the flux. The effect of adding amount of K2O was discussed in the growing process. The crystals were characterized by inductively coupled plasma-optical emission (ICP-OES), X-ray diffraction (XRD) and differential thermal analysis (DTA). The lattice constants of Zn:SLT were smaller than those of SLT and Curie temperature was higher than that of SLT. It was found that Zn doping is an efficient way to improve the optical damage resistance ability of SLT crystal. Compared with SLT crystal, Zn:SLT exhibited a much higher optical damage threshold, more than 500 MW/cm2, which was attributed to Zn self-compensated effect that formed the charge compensated complexes, (ZnTa)3−–3(ZnLi)+ in SLT crystal.  相似文献   

19.
The microstructural characteristics and crystallographic evolutions of Ga-doped ZnO (GZO) films grown at high temperatures were examined by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The GZO films with various film thicknesses were grown on (0 0 0 1) Al2O3 substrates at 750 °C by RF magnetron sputtering using a 2 wt% Ga-doped ZnO single target. The (0 0 0 2) ZnO peaks in the XRD patterns shifted to a higher angle with increasing film thickness and an additional (1 0 1¯ 1) ZnO peak was observed in the final stage of film growth. HRTEM showed the epitaxial growth of GZO films in the initial growth stage and the formation of surface protrusions in the intermediate stage due to elastic relaxation. The surface protrusions consisted of {1 0 1¯ 1}, {1 0 1¯ 3}, and {0 0 0 2} planes. After the surface protrusions had formed, a GZO film with many c-axis tilted grains formed due to plastic relaxation, where the tilted grain boundaries had an angle of 62° to the substrate. The formation of the protrusions and c-axis tilted grains was closely related to the strain status of the film induced by Ga incorporation, high-temperature growth and a high film thickness.  相似文献   

20.
Neodymium phosphate single crystals, NdPO4, have been grown by a flux growth method using Li2CO3-2MoO3 as a flux. The as-grown crystals were characterized by X-ray powder diffraction(XRPD), differential thermal analysis (DTA) and thermogravimetric analysis (TG) techniques. The results show that the as-grown crystals were well crystallized. The crystal was stable over the temperature range from 26 to 1200 °C in N2. The specific heat of NdPO4 crystal at room temperature was 0.41 J/g °C. The absorption and the fluorescence spectra of NdPO4 crystal were also measured at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号