首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of the electronically unsaturated 4-methylquinoline triosmium cluster $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_3\hbox{-}\upeta^{2}\hbox{-}\hbox{C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upmu\hbox{-H})]$ (1) with tetramethylthiourea in refluxing cyclohexane at 81°C gave $[\hbox{Os}_{3}\hbox{(CO)}_{8}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upeta^2\hbox{-SC}(\hbox{NMe}_2\hbox{NCH}_2\hbox{Me})(\upmu \hbox{-H})_2]$ (2) and $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N})(\upeta^1\hbox{-SC}(\hbox{NMe}_2)_2)(\upmu\hbox{-H})]$ (3). In contrast, a similar reaction of the corresponding quinoline compound $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_{3}\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upmu\hbox{-H})]$ (4) with tetramethylthiourea afforded $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upeta^{1}\hbox{-SC(NMe}_{2})_{2})(\upmu\hbox{-H)}]$ (5) as the only product. Compound 2 contains a cyclometallated tetramethylthiourea ligand which is chelating at the rear osmium atom and a quinolyl ligand coordinated to the Os3 triangle via the nitrogen lone pair and the C(8) atom of the carbocyclic ring. In 3 and 5, the tetramethylthiourea ligand is coordinated at an equatorial site of the osmium atom, which is also bound to the carbon atom of the quinolyl ligand. Compounds 3 and 5 react with PPh3 at room temperature to give the previously reported phosphine substituted products $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N)(PPh}_{3})(\upmu\hbox{-H)}]$ (6) and $[\hbox{Os}_{3}\hbox{(CO}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N)(PPh}_{3})(\upmu\hbox{-H)}]$ (7) by the displacement of the tetramethylthiourea ligand.  相似文献   

2.
The trinuclear osmium carbonyl cluster, [Os3(CO)10(MeCN)2], is allowed to react with 1 equiv. of [IrCp1Cl2]2 (Cp1 = pentamethylcyclopentadiene) in refluxing dichloromethane to give two new osmium–iridium mixed-metal clusters, [Os3Ir2(Cp1)2(μ-OH)(μ-CO)2(CO)8Cl] (1) and [Os3IrCp1(μ-OH)(CO)10Cl] (2), in moderate yields. In the presence of a pyridyl ligand, [C5H3N(NH2)Br], however, the products isolated are different. Two osmium–iridium clusters with different coordination modes of the pyridyl ligand are afforded, [Os3IrCp1(μ-H)(μ-Cl)(η33-C5H2N(NH2)Br)(CO)9] (3) and [Os3IrCp1(μ-Cl)223-C5H3N(NH)Br)(CO)7] (4). All of the new compounds are characterized by conventional spectroscopic methods, and their structures are determined by single-crystal X-ray diffraction analysis.  相似文献   

3.
Microwave heating allows for the high-yield, one-step synthesis of the known triosmium complexes Os3(μ-Br)2(CO)10 (1), Os3(μ-I)2(CO)10 (2), and Os3(μ-H)(μ-OR)(CO)10 with R = methyl (3), ethyl (4), isopropyl (5), n-butyl (6), and phenyl (7). In addition, the new clusters Os3(μ-H)(μ-OR)(CO)10 with R = n-propyl (8), sec-butyl (9), isobutyl (10), and tert-butyl (11) are synthesized in a microwave reactor. The preparation of these complexes is easily accomplished without the need to first prepare an activated derivative of Os3(CO)12, and without the need to exclude air from the reaction vessel. The syntheses of complexes 1 and 2 are carried out in less than 15 min by heating stoichiometric mixtures of Os3(CO)12 and the appropriate halogen in cyclohexane. Clusters 36 and 810 are prepared by the microwave irradiation of Os3(CO)12 in neat alcohols, while clusters 7 and 11 are prepared from mixtures of Os3(CO)12, alcohol and 1,2-dichlorobenzene. Structural characterization of clusters 2, 4, and 5 was carried out by X-ray crystallographic analysis. High resolution X-ray crystal structures of two other oxidative addition products, Os3(CO)12I2 (12) and Os3(μ-H)(μ-O2CC6H5)(CO)10 (13), are also presented.  相似文献   

4.
The reactions of [Ru3(CO)10(μ-dppm)] 4 with quinolines afforded [Ru3 (μ-CO)(CO)732-P(C6H5)CH2P(C6H5)2)}{μ-η2-C9H5(R)N}] (8, R = 4-Me; 9, R = H) as the major products along with small amounts of known compound [Ru3(CO)933-P(C6H5)CH2P(C6H5)(C6H4)}] 5. The molecular structure of 8 has been determined by single crystal X-ray studies. The reaction of 5 with 4-methylquinoline in refluxing cyclohexane afforded 8 and two known dinuclear compounds, [Ru2(CO)6{μ-CH2P(C6H5)(C6H4)P(C6H5}] 10 and [Ru2(CO)6 {μ-(C6H4)P(C6H5)(CH2)P(C6H5}] 11, in 40, 12, and 10% yields, respectively. The compounds 10 and 11 are also formed from the thermolysis of 4 in addition to the major compound 5. The solid state structure of the previously reported [Ru3(CO)10(η-H){μ-η2-C9H6N}] 2a is also reported for comparison.  相似文献   

5.
The anion, [(2-H)Os3(CO)10(2-CO)], reacts with the donor ligand EPh3 (E=P or As) to produce, as an intermediate in the reaction to the substituted anion [(2-H)Os3(CO)9(2-CO)(EPh3)], a moderately stable formyl derivative which we tentatively formulate as [Os3(CO)9(2-CHO)(EPh3)].  相似文献   

6.
Pyrolysis a the cluster Os3(µ-H h (CO)10 (SnMe2 H) produced an as yet unidentified purple duster, which upon reaction with PEt2Ph at room temperature, gave essentially a quantitative yield of the cluster Os3(µ-H)3(CO)93-Sn) Os3(µ-H)(CO)10(PEt2Ph), 4. The X-ray structure of 4 (as the toluene solvate) shows that it consists Or two Os, triangles linked through a µ4-Sn unit, such that one of the Os3 triangle is µ3-bonded to the Sn atom (Os-Sn range 2.689(2)–2.707(2) Å) and the other is bonded via a single covalent bond (Os-Sn = 2.643(2) Å). The phosphine ligand occupies the equatorial site on a second osmium atom a be latter Os3 moiety that is syn to the Sn atom; the unique bridging hydride ligarid is believed to occupy a site that Acis to both the P and Sn atoms. Crystallographic data for compound4. 0.5C7H8: space group,P ; ca= 11862(4) Å,b = 12.940(4) Å,c = 16.513(5) Å, =68.96(3),=80.60(3)°,=62.49(2).R=0.029, 4118 observed reflections.  相似文献   

7.
Photolysis of the heterometallic complex (μ-H)Os3{μ-O2CC5H4Mn(CO)3}(CO)10 together with PPh3 results in replacement of the CO groups by PPh3 both at the Mn atom and in the Os3 metallocycle to afford the complexes (μ-H)Os3{μ-O2CC5H4Mn(CO)2PPh3}(CO)10, (μ-H)Os3{μ-O2CC5H4Mn(CO)3}(CO)9}(CO)9PPh3, and (μ-H)Os3{μ-O2CC5H4Mn(CO)2PPh3}(CO)9PPh3 (two isomers). The reaction is also accompanied by the partial removal of the Mn(CO)3 group followed by the protonation of the cyclopentadienyl group and formation of triosmium clusters (μ-H)Os3(μ-O2CC5H4R}(CO)10 (R=H, Et). Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 746–751, April, 2000.  相似文献   

8.
Reaction of the cluster Os3(μ-CO)(CO)93112-Me3SiC2Me) with HC≡CCOOMe in benzene at 70 °C results in Os3(CO)931122-C(SiMe3)C(Me)C(COOMe)CH× (5), Os3(CO)931122-C(SiMe3)C(Me)C(H)C(COOMe)CH× (6), Os3(CO)9{μ-η114-C(SiMe3)C(Me)C(H)C(COOMe)CH× (7), and Os3(CO)δ31141-C(SiMe3)C(Me)C(H)C(COOMe)× complexes (8), containing an osmacyclopentadiene moiety. Complexes5–8 were characterized by1H NMR and IR spectroscopy. The structure of clusters5 and8 was confirmed by X-ray analysis. Complex7 is formed from cluster5 as a result of a new intramolecular rearrangement and complex8 is obtained by decarbonylation of compound6. Complex8 adds PPh3 to give Os3(CO)δ(PPh3){μ-η114-C(SiMe3)C(Me)C(H)C(COOMe)×.  相似文献   

9.
The reaction of [Ru3(CO)12] with Ph2(pyth)PSe (pyth=5-(2-pyridyl)-2-thienyl) allows to obtain two novel clusters [Ru3(3-Se)2(CO)7{P(pyth)Ph2}2] 1 and [Ru3(3-Se)(-PPh2)(-pyth)(CO)6{P(pyth)Ph2}] 2 in satisfactory yields. The first one exhibits the well-known bicapped, open triangular, 50-electron nido-core, whereas 2, whose crystal structure has been determined, shows the rather rare Ru3Se tetrahedron with the Ph2P and pyth fragments as side-bridging ligands. Morever cluster 2 belongs to the exiguous family of selenido-phosphido clusters not easily achievable by other routes.  相似文献   

10.
Reaction of the activated cluster [Os3(CO)11(CNMe)] with primary arsine AsH3 forms the arsinidine compound [H2Os33-AsH)(CO)11] (1a, 1b), which on further reaction with [Os3(CO)11(NCMe)] yields [(CO)11Os3As(Os3(CO)9H3)] (2) and with [H2Os3(CO)10] yields [H2Os3(CO)9As(Os3(CO)9H2)] (3). Similarly [H2Os3(CO)10] reacts with AsH3 at room temperature to afford 3 in good yields. Thermal degradation and rearrangement of 2 gives the pentanuclear cluster [H2Os5(CO)17AsH] (4).  相似文献   

11.
The thermal reactions of 2-methyl-1-hexen-3-yne [CH3CH2C≡CC(=CH2)CH3, metey] with Fe3(CO)12 have been studied: cluster opening or fragmentation and alkyne dimerization occur. Main products are the open triangular isomers [Fe3(CO)6(μ-CO)2{CH3(=CH2)CC(Et)C(Et)C(=CH2)CH3}] (complex 3a) and [Fe3(CO)6(μ-CO)2{C(Et)CCH3(=CH2)C(Et)CCH3(=CH2)}] (complex 3b). The structure and isomerism of the complexes has been confirmed by X-ray studies. The minor products of the reaction have been characterized by spectroscopic techniques. An attempt at exploiting the reactivity of the “free” C=C bonds of the coordinated ene-yne was made: complex 3a was reacted with styrene under thermal conditions. Unexpectedly considerable yields of the closed triangular cluster [Fe3(CO)6{EtC2C(=CH2)CH3}2] (complex 5) have been obtained. This behaviour had not been previously observed. The unprecedented structure of complex 5 has been confirmed with an X-ray study.  相似文献   

12.
In recent years the chemistry of mono- or hetero-binuclear complexes containing metal-S(C) bonding modes is a very active field of research. Many useful applications of this kind of complexes have been exploited, such as industrial catalytic hydrodesulfurization (HDS)1,2 and transition metals mediated organic synthesis3-5. In this paper we report that the reduction and subsequent protonation of hetero-binuclear complex [MnRe(CO)6(-S2CPPri3)] occur with cleavage of metal-metal bond and o…  相似文献   

13.
A neutral triosmium alkylidyne carbonyl cluster containing the 4-vinylpyridine (4vpy) moiety [Os3(µ-H)2(CO)93-CNC5H4-CH=CH2)] (1) has been prepared as red crystalline solids in good yield. Monomer (1) was copolymerized with styrene in the presence of ,'-azobis(isobutyronitrile) (AIBN) in chloroform at 60°C and a polymer-immobilized alkylidyne cluster of osmium was obtained. To compare the spectroscopic properties with the copolymers, a structurally similar repeating unit of the copolymers, [Os3(µ-H)2(CO)9(µ-3-CNC5H4-CH2CH3)I](2), has also been synthesized and characterized.  相似文献   

14.
Reaction of [Os3(μ-H)2(CO)10] with 3,4-dimethyl-1-phenylphosphole in refluxing cyclohexane affords two substituted triosmium clusters: [Os3(CO)9(μ-H)(μ3112-PhPC4H3Me2)] (1) and [Os3(CO)9(H)(μ212-PhPC4H4Me2)] (2), of which cluster 2 exhibits two chromatographically non-separable isomeric forms attributed to terminal and bridging coordination of the hydride ligand, respectively. When this reaction is performed in refluxing THF, the only product is the cluster [Os3(CO)9(μ-OH)(μ-H)(η1-PhPC4H2Me2)] (3). Crystallographic information obtained for cluster 3 shows the phosphole ligand occupying an equatorial position, as expected, while the OH group is asymmetrically bridging unlike previously reported similar compounds. Additionally, interaction of the labile cluster [Os3(CO)11(CH3CN)] with cyanoethyldi-tert-butylphosphine in dichloromethane at room temperature was found to give [Os3(CO)111- t Bu2PC2H4CN)] (4) as the only product; its crystallographic characterization shows that the phosphine ligand coordinates by means of the phosphorus atom in an equatorial fashion, analogous to compound 3.  相似文献   

15.
The compound ReMn(CO)8 (-MeC2NMe2),2 was obtained in 11% yield by the decarbonylation of ReMn(CO)10 with Me3NO followed by reaction MeC2NMe2. Compound2 will add one equivalent of MeC2NMe2 at 25°C to yield the mixed metal complex ReMn(CO)7 [-C(Me) C(NMe2) C(NMe2) C(Me)],3 in 7% yield. Compounds2 and3 were characterized by IR,1H NMR, and single crystal x-ray diffraction analyses. Compound2 exists as two isomers. Each isomer contains an asymmetric bridging ynamine ligand. The principal isomer has the amine-substituted carbon atom coordinated to the manganese atom. The minor isomer has the amine-substituted carbon atom coordinated to the rhenium atom. In compound3 the two ynamines have been coupled in a head-to-head fashion to produce a ferrole-like structure in which the coupled ligands are -bonded to the manganese atom. Extended Hückel molecular orbital calculations were performed on the parent complex Re2(CO)8 (-MeC2NMe2),1 to try to understand the reasons for the preferred asymmetric coordination of the ynamine ligand in1 and2. It was found that the asymmetric coordination permits a strong stabilizing interaction between the one of the * orbitals of the ligand and the metallic orbital that is principally responsible for the formation of the metal-metal bond. Crystal Data: for2: space group=P21/c,a=9.740(1)Å,b=11.293(2)Å,c=15.483(3)Å, =97.46(1)°,Z=4, 1876 reflections,R=0.026; for3: space group=Pca21,a=17.541(2)Å,b=8.441(1)Å,c=14.033(3)Å,Z=4, 1335 reflections,R=0.022.  相似文献   

16.
The oxidation of the [Fe(CO)4]2– dianion with Ag+ salts occurs through a particularinner-sphere mechanism, which involves an intermediate cascade of silver clusters stabilized by Fe(CO)4 ligands. The last detectable Ag-Fe cluster of the sequence is the [Ag13{-Fe(CO)4}8]3– trianion, which has been selectively obtained by using ca. 1.7 equivalents of Ag+ per mole of [Fe(CO)4]2–. The [Ag13{-Fe(CO)4}8]3–- trianion has been isolated in a crystalline state with several quaternary cations, and has been characterized by X-ray diffraction studies of its bis(triphenylphosphine)iminium salt. [N(PPh3)2]3 [Ag13{ 3-Fe(CO)4}8]·2(CH3)2CO, monoclinic, space group P21 (No.4),a = 16.284(2) Å,b =18.767(5) Å,c = 25.905(4) Å, = 90.46(1)°,V = 7916(3) Å3,Z = 2,R = 0.0324. The molecular structure of the anion consists of a centered cuboctahedron of silver atoms with the triangular faces capped by Fe(CO)4 units. Chemical reduction of ( Ag13{ 3-Fe(CO)4}8]3– affords the corresponding [Ag13{ 3-Fe(CO)4)8]4–, which in turn gives [Ag13{ 3-Fe(CO)4)8]5– and [Ag6{ 3-Fe(CO)4}4] upon further reduction. Electrochemical investigations confirm the reversibility of the [Ag13{ 3-Fe(CO)4}8]3–/4– redox change. Furthermore, in spite of some electrode poisoning effects, evidence of the existence of the [Ag13{ 3-Fe(CO)4}8]5– pentaanion was obtained. The yet structurally uncharacterized [Ag6{ 3-Fe(CO)4)4]2– dianion is quantitatively obtained by reaction of [Fe(CO)4]2– with ca. 1.5 equivalents of Ag+ or by addition of one equivalent of Ag+ to solutions of the [Ag5{Fe(CO)4}4]3– trianion. All attempts to isolate its quaternary salts as crystalline materials failed owing to formation of amorphous insoluble precipitates. The above series of 3-Fe(CO)4 octa-capped cuboctahedral Ag13 clusters can be envisioned as the Ag+ . Ag and Ag cryptates of the [Ag12{}3-Fe(CO)4}8]4– cryptand. respectively.Dedicated to Prof L. F. Dahl on his 65th birthday.  相似文献   

17.
The title compound [Co3(CO)9(μ3-C)C(O)OCH2]2 was synthesized by the reaction of [Cl3CC(O)OCH2]2 with Co2(CO)8 at 40~50 ℃. Crystal data: C24H4O22Co6, Mr=997.88, monoclinic, space group P21/n(#14), a=9.330(2), b=15.197(4), c=11.783(4), β=91.16(2)°, V=1670.4(7) 3, Z=2, Dc=1.984 g/cm3, μ(MoKα)=30.01 cm-1, F(000)=972.00, T=293K, final R=0.045, Rw=0.051 for 1936 observed reflections with I>2σ(I). The structure contains two centrosymmetric dimeric molecules in a unit cell, each of which has two tetrahedral skeletons (CCo3) connected through a C(O)OCH3CH2OC(O) bridge.  相似文献   

18.
The reaction of [Os3(CO)10(μ-dppm)] (1) with tBu2PH in refluxing diglyme results in the electron-deficient metal cluster complex [Os3(CO)5(μ3-H)(μ-PtBu2)2(μ-dppm)] (2) (dppm = Ph2PCH2PPh2) in good yields. The molecular structure of 2 has been established by a single crystal X-ray structure analysis. In contrast to the known homologue [Ru3(μ-CO)(CO)4(μ3-H)(μ-H)(μ-PtBu2)2(μ-dppm)] (3), no bridging carbonyl ligand was found in 2. The electronically unsaturated cluster 2 does not react with carbon monoxide under elevated pressure, therefore 2 seems to be coordinatively saturated by reason of the high steric demands of the phosphido ligands.  相似文献   

19.
20.
A series of novel chiral complexes with ,1and ,2 coordination of organic ligands were prepared by reactions of Os3(CO)11(MeCN) and (-H)Os3(CO)10(-OH) withL--serine ethyl ester and ethanolamine. The diastereomeric cluster complexes with serine ligands were separated by crystallization or chromatography. The structures of the compounds obtained were confirmed by1H NMR and IR spectroscopy, mass-spectrometry, elemental analysis, and X-ray diffraction analysis.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 525–530, March, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号