首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Computation of turbulent reactive flows in industrial burners   总被引:1,自引:0,他引:1  
This paper presents models that are suitable for computing steady and unsteady gaseous combustion with finite rate chemistry. Reynold averaging and large eddy simulation (LES) techniques are used to model turbulence for the steady and unsteady cases, respectively. In LES, the Reynold stress terms are modelled by a linear combination of the scale-similarity and eddy dissipation models while the cross terms are of the scale-similarity type. In Reynold averaging, the conventional kε two-equation model is used. For the chemical reactions, a 3-step mechanism is used for methane oxidation and the extended Zeldovich and N2O mechanism are used for NO formation. The combustion model is a hybrid model of the Arrhenius type and a modified eddy dissipation model to take into account the effects of reaction rate, flame stretch and turbulent intensity and scale. Numerical simulations of a flat pulse burner and a swirling burner are discussed.  相似文献   

2.
In order to improve the precision of quasi-dimensional combustion model for predicting diesel engine performance and promote the real time operating performance of the simulation model, a new phase-divided spray mixing model is proposed and the quasi-dimensional combustion model of diesel engine working process is developed. The software MATLAB/Simulink is utilized to build the quasi-dimensional combustion model of diesel engine working process, and the performance for diesel engine is simulated. The simulation results agree with experimental data quite well. The comparisons between them show that the relative error of power and brake specific fuel consumption is less than 2.8% and the relative error of nitric oxide and soot emissions is less than 9.1%. By utilization of this simulation model with personal computer, the average computational time for one diesel engine working process is 36 s, which presents good real time operating performance of the model. At the same time, the influence of parameters in calculation of air entrainment on prediction precision of diesel engine’s simulation model is analyzed.  相似文献   

3.
He J.  Li F.  Hu Q.  Wang L. 《应用数学和力学》2023,(9):1017-1030
An OpenFOAM-based solver for spray combustion simulation with the large eddy simulation (LES) and the flamelet generated manifold (FGM) method, was developed. A simple reduction of the temperature was employed to account for the evaporative heat loss. The solver was firstly validated against the Sydney piloted ethanol spray flame benchmark EtF7. The predicted mean gas temperature and droplet statistics correspond well with the experimental data and have similar accuracy to the spray flamelet model. The turbulence-chemistry interaction modeling may have a larger influence on the simulation accuracy. Then a realistic gas turbine slinger combustor was simulated with 2 sets of operating conditions. The simulation results reveal different flame characteristics of the 2 working conditions. The predicted total pressure losses are close to the measured values. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

4.
Large eddy simulation of a three-dimensional spatially developing transitional free methane non-premixed flame is performed. The solver of the governing equations is based upon a projection method. The Smagorinsky model is utilized for the turbulent subgrid scale terms. A global reaction mechanism is applied for the simulation of methane/air combustion. Simulation results clearly illustrate the coherent structure of the rectangular non-premixed flame, consisting of three distinct zones in the near field. Periodic characteristics of the coherent structures in the rectangular non-premixed flame are discussed. The predicted structure of the flame is in good agreement with the experimental results. Distributions of species concentrations across the flame surfaces are illustrated and typical flame structures in the far field are analyzed. Local mass fraction analysis and flow visualization indicate that the black spots of the flames are due to strong entrainment of oxygen into the central jet by streamwise vortices, and breaking up of the flame is caused by an enormous amount of entrainment of streamwise vortices as well as stretching of spanwise vortices at the bottom of the flame.  相似文献   

5.
Large eddy simulation (LES) using a dynamic eddy viscosity subgrid scale stress model and a fast-chemistry combustion model without accounting for the finite-rate chemical kinetics is applied to study the ignition and propagation of a turbulent premixed V-flame. A progress variable c-equation is applied to describe the flame front propagation. The equations are solved two dimensionally by a projection-based fractional step method for low Mach number flows. The flow field with a stabilizing rod without reaction is first obtained as the initial field and ignition happens just upstream of the stabilizing rod. The shape of the flame is affected by the velocity field, and following the flame propagation, the vortices fade and move to locations along the flame front. The LES computed time-averaged velocity agrees well with data obtained from experiments.  相似文献   

6.
Summary The influence of combustion on heat and mass transfer is investigated on the following model. A mixture of an inert with a combustible gas (air) flows in steady, laminar flow over a flat plate. A mass flux of gaseous fuel away from the plate surface is produced by some means. Combustion is assumed to occur with very fast reaction rate so that the process is purely controlled by diffusion and the equilibrium is assumed as very close to complete combustion. It is studied under which conditions the combustion occurs at the surface or when the flame is displaced into the boundary layer. The influence of combustion on the heat transfer from a hot gas to the plate surface is calculated, for the condition that combustion occurs at the surface.   相似文献   

7.
The flow field, scavenging efficiency, power output, heat transfer losses, and unburned hydrocarbon emissions have been numerically studied by means of a two-equation model of turbulence in a four-stroke, homogeneous-charge, spark-ignition engine. The engine is equipped with an intake valve, an exhaust valve, and a constant rate heat source which simulates the spark plug. Combustion has been modelled by means of a one-step irreversible chemical reaction whose rate is controlled by an Arrhenius-type expression. The numerical results indicate that the intake stroke is characterized by the formation of two eddies which persist in the compression stroke. Turbulence is generated at the shear layers of the air jet drawn into the cylinder, but its level decreases in the compression stroke. Due to the heat released by the spark plug and the chemical reaction, a spherical flame kernel is formed. This kernel evolves into a cylindrical flame when the flame front reaches the piston. Fuel remains unburnt at the corner between the cylinder head and the cylinder wall due to heat transfer losses. The numerical results also indicate that despite uncertainties about the turbulence and heat transfer models, an engine model such as the one studied here can be used to understand the flow field, heat transfer losses, scavenging efficiency, and power output in conventional spark-ignition engines. Such capabilities are very helpful in the development and optimization stages of engines. For example, here the engine model thermal and scavenging efficiencies are 15.69% and 94%, respectively. The peak pressure is 33 atm and occurs at 6° ATDC. The unburnt hydrocarbon emissions are 7.41% of the total fuel admitted into the cylinder.  相似文献   

8.
The aim of this study was to implement Economic Order Quantity method (EOQ) together with the Lambert W function in a 1-D engine simulation model in order to develop a fuel control strategy for a Gasoline direct injection (GDI) engine. Previous work of the co-author demonstrated the possibility of optimizing fuel injection quantity in GDI engine using the EOQ that is commonly used in supply chain of perishable products. This work extends the previous work and implements it in a 1-D, crank angle resolved, engine simulation model for the application of model based calibration process. The present work uses a validated engine simulation model, which is based on predictive combustion modelling approach, and couples the 1-D engine simulation model with SIMULINK to add the evaporation, wall- wetting and heat transfer models. It employs FORTRAN subroutines to modify the internal code of the 1-D simulation software in order to add crank angle resolved evaporation model. Finally, EOQ with Lambert W function was added to the model using MATLAB with special attention to the decimal control for the solution. This study demonstrated that EOQ and Lambert W functions together are a suitable method to develop fuel control strategy for a model based calibration procedure when implemented in crank angle resolved 1-D simulation model.  相似文献   

9.
An algorithm is presented for numerical simulations of time-dependent low Mach number variable density flows with an arbitrary amount of scalar transport equations and a complex equation of state. The pressure-correction type algorithm is based on a segregated solution formalism. It is conservative and guarantees stable results, regardless of the difference in density between neighboring cells. Furthermore, states are predicted which exactly match the equation of state. In the one-dimensional example, considering non-premixed flames, a simplified flamesheet model is used to describe the combustion of fuel and oxidizer. We demonstrate that the predicted states exactly correspond to the equation of state. We illustrate the accuracy improvement due to higher order formulation and demonstrate grid convergence.  相似文献   

10.
Cellular, low amplitude structures appearing at cylindrical and spherical fronts of gaseous combustion and laser evaporation are described. In the case of a spherical front all these structures are found to be unstable. When the cylindrical front of gaseous combustion is expanded, we must expect the quasi one-dimensional structure homogeneous with respect to the ignorable coordinate to be replaced by a parquet-like pattern of rectangular cells, and later to reach a non-stationary regime. On the cylindrical front of laser evaporation the quasi one-dimensional structure of maximum amplitude is globally stable.

The best known hydrodynamic example of a kinetic problem connected with the formation of dissipative structures i.e. thermodynamically nonequilibrium stationary structures appearing as a result of the development of aperiodic instability in a spatially homogeneous state, are Benard cells /1,2/. New problems of this kind are connected with the instability of plane fronts of laser evaporation of condensed material, and of gaseous combustion /3–5/. The instability is aperiodic and appears at finite values of the wave number of the perturbation representing curvature of a plane front. The development of the instability leads to the formation of a stationary, periodically curved front /3/.

The purpose of this paper is to investigate such structures and their stability on cylindrical and spherical surfaces, and this corresponds to the problem of the propagation of a cylindrical or spherical flame through a gas, and of the laser evaporation of a spherical sample. Problems dealing with dissipative structures on curved surfaces are also of interest in biophysics, where a spherical surface models a cell membrane, while the cylindrical surface models the axon /6/.  相似文献   


11.
This paper presents the modeling and control of a novel pressure regulation mechanism for the common rail (CR) fuel injection system of internal combustion engines (ICE). The pressure pulsations inside the common rail caused by the incoming and outgoing flows negatively affect the accuracy of both injected fuel quantities and flow rates. The objective of this work is to design a new regulating mechanism to suppress the pressure pulsation in the rail. We first present the one-dimensional distributed model for the common rail developed by using fluid flow equations, which can capture the distributed dynamics of the pressure pulsations in the rail and validating it with a physics based model developed in AMESim®. We then propose the concept of an active fluid storage device like a piezoelectric actuator (PZT) to minimize the pressure fluctuations. The location of the actuator on the common rail has also been evaluated to maximize its effect. The periodic nature of the injection event due to the stroke by stroke engine operation generates pressure pulsations in the rail which are periodic when represented in the rotational angle domain. To leverage this unique dynamic phenomenon we design a time-varying internal model-based controller to compensate the pressure pulsations.  相似文献   

12.
In this paper, the numerical method level set has been used to model the combustion process in an Otto two-stroke engine. The level set has been implemented in a CFD (Computational Fluid Dynamics) software based in finite volumes. The pressure and temperature fields have been obtained, such as the propagation of the flame front. In order to validate this model, the numerically obtained results have been compared with experimental data, verifying a satisfactory concordance between both of them. Besides, the level set method has been compared with other numerical procedure, showing the difference between both results.  相似文献   

13.
The paper deals with a level set approach application to SI engine combustion modelling, which is based on solving an additional transport equation to determine the flame front propagation. The presented work is an extension of the paper [6]. The influence of engine speed, air excess, swirl number, engine load as well as application of different turbulence model, in.uence of mesh coarseness and model fine-tuning constants are investigated and the results are presented. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
An implicit finite difference scheme was used to solve the convective-diffusion equation to predict the steady-state transport of a conservative, neutrally bouyant tracer injected along the centreline into a fully developed turbulent pipe flow. Three different distributions for the radial mass diffusivity have been compared with two independent sets of experimental data. The results indicate that the distribution based on the turbulent kinematic eddy viscosity predicted by a k?l model produces the closest agreement between the numerical model predictions and the experimentally observed tracer distribution.  相似文献   

15.
In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity-concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature.  相似文献   

16.
Bushfires are quantified by their flame characteristics or by calculations of the rate that energy is released from the fire front. These calculations require careful definition and measurement of available fuel. Researchers need to recognise that combustion proceeds at a variable rate across the combustion zone. This will influence the relationship between Byram's fireline intensity and flame characteristics or fire effects. Byram's fireline intensity should not be used to compare fires in fuel types which are structurally very different.  相似文献   

17.
This paper presents results of mathematical simulations of dynamic flame behavior that occurs in burning diesel fuel, as well as experimental data on turbulent flame eddies provided by infrared thermography. The comparison of the simulated and experimental data documents a good match between the parameters of flame thermodynamics and the combustible gas flow in a turbulent eddy. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Using small perturbations, within the framework of phenomenological theory of mixture combustion we study stability of the cylindrical front of deflagration combustion in an annular combustion chamber. The flame front is described as a discontinuity of gasdynamic parameters. It is discovered that the flame front is unstable for some types of small perturbations of the mainstream flow of the fuel mixture and the flame front. The mechanics of instability is examined using both numerical and analytical methods. The cases are presented of evolution of the instabilities rotating in the annular channel.  相似文献   

19.
A finite difference procedure has been employed to predict the flow situation in a recessed wall flame holder with and without combustion. Turbulence has been modelled by an ad hoc effective viscosity law. A single step chemical reaction has been assumed in dealing with the flows involving combustion. The predicted physical parameters have been compared with the experimental results. It has been argued that with the simplifying assumptions on turbulence and chemical kinetics the numerical procedure is adequately accurate to predict the important design parameters such as flame length and blow-off velocity. However, there are significant discrepancies between the predicted and measured distribution of velocity and temperature which could be attributed mainly to the inadequate turbulence modelling.  相似文献   

20.
In experiment, two optical and pressure-based methods are frequently used to evaluate laminar burning velocity of a combustible mixture. In the currently reported work, the pressure-based method was utilized to find the laminar burning velocity using the measurement of pressure variations during the combustion process in a spherical bomb and analyzing them through a multi-zone quasi-dimensional model. To check the results of the method, isooctane–air mixtures were used at equivalence ratios of 0.85 and 1.0 and initial pressures of 95 and 150 kPa with 343 K initial temperature. The time history of the bomb pressure during the combustion event, initial pressure and temperature, fuel type, and equivalence ratio were applied as input to a Fortran program written by the author based on the multi-zone combustion model; and, flame radius-time, flame speed, and laminar burning velocity at different pressures and temperatures were evaluated assuming spherical flame growth. The obtained results were compared with those of some other researchers and a reasonable agreement was observed. The wall effect on the laminar burning velocity at the end of the combustion process was clearly highlighted and a reliable range of burning velocity was distinguished. The results showed that the evaluated laminar burning velocity was not reliable at the late part of the combustion process due to possible local contact of flame front and the bomb wall, the wall effect on the reacting species, flow to small crevices, and the boundary layer effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号