首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The retention properties of calcitonins on a reversed-phase column are examined using salmon calcitonin as the model compound. The effect of the concentration of organic modifier, buffer strength, pH of the mobile phase, and ion-pair reagent are studied. In the absence of an ionic modifier in the eluent the calcitonin peak shapes are not symmetrical. The addition of 0.1% trifluoroacetic acid (TFA), however, results in good peak characteristics without the need to add nonvolatile salts. The retention of the calcitonins was found to be very sensitive to the concentration of the organic modifier (acetonitrile) present in the mobile phase. A change of pH between 2 and 5 has only a slight effect of the k' of salmon calcitonin, but the k' increases significantly at higher pH values. The addition of a phosphate buffer to the mobile phase and an increase in the buffer concentration (0-0.2 M) causes a decrease in the retention of salmon calcitonin. Evidence shows that reproducible, quantitatively measurable data can be obtained using reversed-phase chromatography if the ion-pairing reagent and organic modifier concentrations are carefully controlled. The system also shows a good selectivity for the calcitonin series. Therefore, both highly selective methods (qualitative) as well as quantitative methods for analytical, pharmaceutical, and manufacturing use can be developed by adjusting the high-performance liquid chromatography (HPLC) conditions as discussed.  相似文献   

2.
A new model of surface diffusion in reversed-phase liquid chromatography (RPLC) was derived by assuming a correlation between surface and molecular diffusion. Analysis of surface diffusion data under different conditions of sample compounds, mobile and stationary phases, and temperature in RPLC systems validates this assumption and shows that surface diffusion should be regarded as a molecular diffusion restricted by the adsorptive interactions between the adsorbate molecule and the stationary phase surface. A surface-restricted molecular diffusion model was proposed as a first approximation for the mechanism of surface diffusion. The model is formulated according to the absolute rate theory. The activation energy of surface diffusion (Es) was quantitatively interpreted assuming that Es consists of the contributions of two processes, a hole-making and a jumping one. The former contribution is nearly equal to the activation energy of molecular diffusion and is correlated with the evaporative energy of the mobile phase solvent. The latter contribution is a fraction of the isosteric heat of adsorption. An appropriate explanation based on this new model of surface diffusion is provided for two contradictory results related to the relationship between retention equilibrium and surface diffusion in RPLC and to the surface diffusion coefficient for weakly retained sample compounds.  相似文献   

3.
Single-component adsorption isotherm data of l-tryptophan on a C18-bonded silica column were acquired by frontal analysis (FA), with aqueous mobile phases containing 2.5, 5, and 7.5% of acetonitrile (ACN) or 7, 10, 15, and 20% of methanol (MeOH). Most of these isotherms have two inflection points and three different parts. The low and the high concentration parts exhibit langmuirian behavior. The intermediate part exhibits anti-langmuirian behavior. The inflection points shift toward higher concentrations with increasing mobile phase concentration in ACN or MeOH, which causes the differences in the isotherm profiles. The nature of the organic modifier and its concentration affect only the isotherm profile and the numerical values of its parameters, not the nature of the best model, which is the bi-Moreau model in all cases. The isotherm profiles depend on the experimental conditions because they affect the intensity of the adsorbate-adsorbate interactions. Overloaded band profiles of tryptophan were recorded with the seven mobile phase compositions. They were used to determine the best values of the isotherm coefficients by the inverse method (IM) of chromatography. There is an excellent agreement between the values of these parameters obtained by FA and by IM. Increasing the concentration of either ACN or MeOH in the mobile phase causes a slight decrease in the saturation capacities of the low and the high energy sites, and in the adsorption constant of the low energy sites. The adsorption constant of the high energy sites increases with increasing concentration of either solvent or is little affected. The adsorbate-adsorbate interaction constants of both low and high energy sites increase for both solvents. Saturation capacities of the high energy sites are higher for ACN than for MeOH.  相似文献   

4.
Summary The effect of temperature and mobile phase composition (methanol-water) on the retention behaviour of an oligomeric series of n-octylsilyl bonded phases in reversed-phase liquid chromatography has been investigated. Plots of lnk against 1/T (van't Hoff plot) and the enthalpy of transfer (ΔHo) yields linear relationships under the conditions studied. The ΔHo values of the aromatic hydrocarbons and n-alkyl benzoates are higher than those of the polar compounds due to their higher level of interaction with the stationary phase. A linear plot of ΔHo vs. ΔSo suggest that the retention process, which is essentially controlled by non-specific (dispersive) interactions between the solutes and the bonded ligands, is identical for all cases evaluated. The existence of similar retention mechanisms is confirmed by the constant value of the enthalpy-entropy compensation temperature of the columns for a given class of componds. As expected, decreasing the methanol content (% v/v) of the mobile phase results in increased eluite retention times. The methylene and phenyl selectivities are found to be independent of the carbon content of the stationary phases and varied only with the eluent composition. In addition to their high stability under aggressive mobile phase conditions as previously reported, the results of this study generally showed that the solute retention process on oligomeric phases are similar to those exhibited by the conventional reversed phases.  相似文献   

5.
Sodium hexafluorophosphate, perchlorate and trifluoroacetate were applied as ion-ion interaction reagents in reversed-phase liquid chromatography. The separation of chosen alkaloids was performed by changing the kind of the organic modifier (methanol, acetonitrile, tetrahydrofuran), concentration of the ion-ion-interaction reagents and the concentration of phosphate buffer at constant pH (2.7) in the mobile phase. Obtained results were analyzed in connection to a dynamic ion-exchange model of retention and ion-ion interaction effects. The perturbation method was applied to test proposed retention theories. The formation of ion-complexes controlling the retention in chaotropic systems was confirmed. On the basis of the relationships of capacity factors (k) versus salt concentrations derived experimentally, absolute increases in capacity factors, the desolvation parameters and the limiting retention factors were calculated and compared for all the investigated compounds in eluent systems studied. The selectivity of the proposed mobile phases was compared on the basis of the separation of alkaloid mixture.  相似文献   

6.
More than 40 years ago, Giddings pointed out in “Dynamics of Chromatography” that surface diffusion should become an important research topic in the kinetics of chromatographic phenomena. However, few studies on surface diffusion in adsorbents used in chromatography were published since then. Most scientists use ordinary rate equations to study mass transfer kinetics in chromatography. They take no account of surface diffusion and overlook the significant contributions of this mass transfer process to chromatographic behavior and to column efficiency at high mobile phase flow rate. Only recently did the significance of surface diffusion in separation processes begin to be recognized in connection with the development of new techniques of fast flow, high efficiency chromatography. In this review, we revisit the reports on experimental data on surface diffusion and introduce a surface-restricted molecular diffusion model, derived as a first approximation for the mechanism of surface diffusion, on the basis of the absolute rate theory. We also explain how this model accounts for many intrinsic characteristics of surface diffusion that cannot properly be explained by the conventional models of surface diffusion.  相似文献   

7.
8.
M. Ryba 《Chromatographia》1982,15(4):227-230
Summary N,N-Dimethylformamide selectively accelerates the elution of weakly basic compounds and reduces their tailing in reversed-phase liquid chromatography with aqueous organic mobile phases. This effect is demonstrated with two types of octadecylsilica packings for representative solutes, covering aromatic amines and N-heterocyclic compounds such as pyridine, pyrimidine and purine derivatives.  相似文献   

9.
Lipophilicity was evaluated using a novel RP-HPLC stationary phase (Discovery-RP-Amide-C16) with and without 1-octanol added to the mobile phase. A set of 46 drugs and flavonoids characterized by a broad structural diversity and a wide log Poct range (-0.69 to 5.70) was selected for this study. This set consists of neutral solutes and solutes with acidic or ampholytic functionalities which were maintained neutral at pH 2.5 or 4. In our conditions, the addition of 1-octanol in the mobile phase proved a key factor to derive a lipophilicity index log k(w) highly correlated with log Poct for all investigated solutes. 1-Octanol improved the correlation between log Poct and log k(w) mainly by influencing the retention behavior of the solutes with log Poct values below +3. This study brings additional evidence that under proper experimental conditions of stationary and mobile phases, RP-HPLC is a very useful method to obtain log Poct values.  相似文献   

10.
An extension of the treatment adopted in a recent paper [P. Nikitas, A. Pappa-Louisi, P. Agrafiotou, J. Chromatogr. A 946 (2002) 33] was used to derive expressions describing the variation of solute retention k with composition in ternary reversed phase liquid chromatography, RP-LC, solvent systems. The equation of the partition model obtained in this way for a ternary mobile phase was identical to that previously derived using the solubility parameter concept. This equation as well as two new expressions of In k versus organic modifiers content were tested in a variety of ternary solvent systems in order to examine the possibility of predicting retention behavior of solutes under ternary solvent mixture elution conditions from known retention characteristics in binary mobile phases. It was demonstrated the superiority of both new equations derived in this paper to that previously proposed and applied to date in ternary solvent mixtures.  相似文献   

11.
Single-component adsorption isotherm data were acquired by frontal analysis for phenol on a C18-Kromasil packed column, under reversed-phase liquid chromatography conditions, using various methanol-water solutions (30-60%, v/v, methanol). The isotherm model accounting best for these data was the biLangmuir model. With increasing methanol content, the two saturation capacities decrease, particularly that of the high-energy sites, the adsorption constant of the low-energy sites decreases significantly and that of the high-energy sites decreases strongly. These results allow a quantitative investigation of the properties of the high-energy sites (which are not necessarily the so-called active sites), a feature rarely discussed yet. The band profiles calculated with the numerical values of the isotherm model parameters derived by fitting the frontal analysis data to the model and using the equilibrium-dispersive model agree very well with the experimental band profiles in the whole concentration range.  相似文献   

12.
Summary The dependence of column efficiency on the eluent (MeOH/H2O) composition in a reversed-phase liquid chromatography system within a wide concentration range has been systematically examined. It is shown that when the intracolumn effect of mass transfer and diffusion is the main factor controlling band broadening the column efficiency decreases with the increase of the viscosity of the MeOH/H2O mixture; on the other hand, when the extra-column effect is the main factor an increase in the viscosity of the eluents will help in improving column efficiency. The column efficiency is also related to the properties of the sample.  相似文献   

13.
Summary Oxalodihydroxamic acid is proposed as a UV-detectable substitute for D2O for the convenient estimation of the mobile phase volume (Vm) of water-rich hydro-organic eluents in reversed-phase liquid chromatography. The retention volume of oxalodihydroxamic acid deviates less than 6% from that of D2O in 0 to 50% methanol-and acetonitrile-water eluents on C1, C8, and C18 reversed-phase supports; it is independent of the amount injected from 10ng to 20μg when monitored at 254nm, although the sensitivity is about four-fold greater at 219 nm. The pH should be maintained between about 2 and 4. The deviation from the D2O retention volume on supports of typical porosity is attributed, at least in part, to a size-exclusion effect. Simple hydroxamic acids can be used as a homologous series for the estimation of Vm over most of the methanol- and acetonitrile-water concentration ranges by the linearization of retentions of homologous series method. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

14.
15.
Although alkylammonium ionic liquids (ILs) such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase "solvents" for liquid chromatography (LC), we have shown that the IL methylammonium formate (MAF), in part because of its lower viscosity as compared to other ILs, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation is possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important, permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer at the 5% level for LC with mass spectrometry detection of water-soluble vitamins is also shown.  相似文献   

16.
The solvation parameter model system constants and retention factors were used to interpret retention properties of 39 calibration compounds on a biphenylsiloxane-bonded stationary phase (Kinetex biphenyl) for acetone-water binary mobile phase systems containing 30–70% v/v. Variation in system constants, phase ratios, and retention factors of acetone-water binary mobile phases systems were compared with more commonly used acetonitrile and methanol mobile phase systems. Retention properties of acetone mobile phases on a Kinetex biphenyl column were more similar to that of acetonitrile than methanol mobile phases except with respect to selectivity equivalency. Importantly, selectivity differences arising between acetone and acetonitrile systems (the lower hydrogen-bond basicity of acetone-water mobile phases and differences in hydrogen-bond acidity, cavity formation and dispersion interactions) could be exploited in reversed-phase liquid chromatography method development on a Kinetex biphenyl stationary phase.  相似文献   

17.
In the past few decades, shape selectivity has drawn a great deal of attention from chromatographers. The chemistry and characteristics of bonded stationary phases such as phase type, length of bonded phase, surface coverage, and silica surface material have an effect on the shape selectivity of the columns. Although the effects of bonded phase shape selectivity are relatively well understood, one remaining question is the effect of intercalated solvent on shape selectivity. The intercalation of organic modifier and water molecules into the stationary phase is believed to introduce more rigidity into bonded alkyl chains in RPLC. The use of gas chromatography (GC) opens a new dimension to approach this question. C18 columns 4 cm in length were prepared in our laboratory and used in both LC and GC experiments. Shape selectivity and thermodynamic constants for the transfer of a solute from the mobile phase to the stationary phase have been determined as a function of monomeric octadecyl stationary phase bonding densities over the range of 1.44-3.43 micromol/m2 and a polymeric phase (nominal surface coverage 4.77 micromol/m2). Comparing LC and GC experiments, we observed: (a) similar relationships between shape and phenyl selectivities with monomerically bonded C18 phase densities; (b) different correlation of thermodynamic quantities (DeltaH degrees , DeltaS degrees , and DeltaG degrees ) versus bonded phase densities. The effects of high temperature and residual silanol groups are sources of difficulty in elucidation of the intercalated mobile phase role in selectivity and retention for GC measurements.  相似文献   

18.
In the normal phase preparative HPLC of fermentation derived echinocandins, resolution of key impurities from the product of interest, pneumocandin B(o), is accomplished using a ternary ethyl acetate/methanol/water mobile phase with silica gel as the sorbent. In this work, previous characterization of the system is extended to define the impact and role of water content on the separation efficiency and retention of pneumocandin B(o). Experimental results indicate that column efficiency, measured using both the product of interest and small molecule tracers (compounds used for pulse tests), is good despite the use of an irregular silica and unusually high levels (greater than 6%) of water in the mobile phase. In contrast to column efficiency measurements using small molecules (MEK and toluene), measurements performed with the product itself indicate improved efficiency with increasing water content of the mobile phase. Building on these results, a scale-up/scale-down protocol was developed based on measurements of column efficiency using theoretical plate counts determined with pneumocandin B(o). Since the solubility of pneumocandin B(o) in the ternary mobile phase is relatively low, a higher strength solvent with higher levels of methanol and water is employed for dissolution of the crude product at concentrations of up to 40g/L. The mismatch between the high strength solvent used for the feed introduction and the mobile phase has the potential to affect column performance. The impact of this mismatch using plate count measurements with the product at both analytical and semi-preparative scales was found not to be significant. Finally, a van't Hoff analysis was performed to characterize the thermodynamics of adsorption of pneumocandin B(o) on silica. The analysis shows that the adsorption process for pneumocandin B(o) on silica in the ternary solvent system is endothermic (DeltaH(ads)>0), implying that the adsorption is entropically driven. Results from an overall water balance across the column indicate significant enrichment of adsorbed water on the silica surface. These results further emphasize the importance of selective partitioning of water between the bulk mobile phase and the silica as a dominant factor in controlling retention.  相似文献   

19.
The effect of varying mobile phase composition across a ternary space between two binary compositions is examined, on four different reversed-phase stationary phases. Examined stationary phases included endcapped C8 and C18, as well as a phenyl phase and a C18 phase with an embedded polar group (EPG). Mobile phases consisting of 50% water and various fractions of methanol and acetonitrile were evaluated. Retention thermodynamics are assessed via use of the van’t Hoff relationship, and retention mechanism is characterized via LSER analysis, as mobile phase composition was varied from 50/50/0 water/methanol/acetonitrile to 50/0/50 water/methanol acetonitrile. As expected, as the fraction of acetonitrile increases in the mobile phase, retention decreases. In most cases, the driving force for this decrease in retention is a reduction of the enthalpic contribution to retention. The entropic contribution to retention actually increases with acetonitrile content, but not enough to overcome the reduction in the enthalpic contribution. In a similar fashion, as methanol is replaced with acetonitrile, the v, e, and a LSER system constants change to favor elution, while the s and c constants change to favor retention. The b system constant did not show a monotonic change with mobile phase composition. Overall changes in retention across the mobile phase composition range varied, based on the identity of the stationary phase and the composition of the mobile phase.  相似文献   

20.
The linear dependence of the retention factor of indole, imidazole, triazole, and tetrazole derivatives on the acetonitrile content of the mobile phase was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号