共查询到20条相似文献,搜索用时 15 毫秒
1.
Lupulescu A Brown SP Spiess HW 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2002,154(1):101-129
A new two-dimensional heteronuclear multiple-quantum magic-angle spinning (MQ MAS) experiment is presented which combines high resolution for the half-integer quadrupolar nucleus with information about the dipolar coupling between the quadrupolar nucleus and a spin I=1/2 nucleus. Homonuclear MQ coherence is initially created for the half-integer quadrupolar nucleus by a single pulse as in a standard MQ MAS experiment. REDOR recoupling of the heteronuclear dipolar coupling then allows the creation of a heteronuclear multiple-quantum coherence comprising multiple- and single-quantum coherence of the quadrupolar and spin I=1/2 nucleus, respectively, which evolves during t1. Provided that the t1 increment is not rotor synchronized, rotor-encoded spinning-sideband patterns are observed in the indirect dimension. Simulated spectra for an isolated IS spin pair show that these patterns depend on the recoupling time, the magnitude of the dipolar coupling, the quadrupolar parameters, as well as the relative orientation of the quadrupolar and dipolar principal axes systems. Spectra are presented for Na2HPO4, with the heteronuclear 23Na-1HMQ MAS experiments beginning with the excitation of 23Na (spin I=3/2) three-quantum coherence. Coherence counting experiments demonstrate that four- and two-quantum coherences evolve during t1. The heteronuclear spinning-sideband patterns observed for the three-spin H-Na-H system associated with the Na(2) site are analyzed. For an IS2 system, simulated spectra show that, considering the free parameters, the spinning-sideband patterns are particularly sensitive to only, first, the angle between the two IS internuclear vectors and, second, the two heteronuclear dipolar couplings. It is demonstrated that the proton localization around the Na(2) site according to the literature crystal structure of Na2HPO4 is erroneous. Instead, the experimental data is consistent with two alternative different structural arrangements, whereby either there is a deviation of 10 degrees from linearity for the case of two identical Na-H distances, or there is a linear arrangement, but the two Na-H distances are different. Furthermore, the question of the origin of spinning-sidebands in the (homonuclear) MQ MAS experiment is revisited. It is shown that the asymmetric experimental MQ sideband pattern observed for the low-C(Q) Na(2) site in Na(2)HPO4 can only be explained by considering the 23Na chemical shift anisotropy. 相似文献
2.
Massiot D Hiet J Pellerin N Fayon F Deschamps M Steuernagel S Grandinetti PJ 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2006,181(2):310-315
We show that the two-dimensional one pulse (TOP) representation of magic-angle spinning nuclear magnetic resonance data of half-integer quadrupolar nuclei has significant advantages over the conventional one-dimensional spectrum. The TOP spectrum, which correlates NMR frequency to spinning sideband order, provides a rapid determination of the number of sites as well as the size of the their quadrupolar coupling. Additionally, synchronous acquisition spectra of the central and satellite transition resonances can be separated by different projections of the TOP spectrum, with higher resolution spectra often found in the satellite transitions projection. A previously perceived problem of centerband aliasing in TOP can be eliminated with an algorithm that uses larger subspectral widths and the sideband order dimension to distinguish centerbands from sidebands. 相似文献
3.
4.
The spin-locking mechanism of the spin I=3/2 quadrupolar nuclei under magic angle spinning (MAS) has been theoretically and experimentally investigated, and the criterion of adiabatic passage around zero-crossings of the quadrupole splitting was inferred from the time-dependent Shrödinger equation in this article. The theory, numerical simulations, and experiments conducted in this work all indicated that second-order quadrupole interaction and off-resonance play important roles in the spin-locking of the quadrupolar nuclei, and they were responsible for the great loss of the spin-locking signals. The spin-locking for a spin I=3/2 nucleus might be achieved by minimizing the effect of the second-order quadrupole interaction by using a radio frequency (RF) offset. This offset was realized by setting the RF to the opposite position of the isotropic second-order quadrupolar shift of single quantum coherences. 相似文献
5.
The spin-locking mechanism of the spin I=3/2 quadrupolar nuclei under magic angle spinning (MAS) has been theoretically and experimentally investigated, and the criterion of adiabatic passage around zero-crossings of the quadrupole splitting was inferred from the time-dependent Shrödinger equation in this article. The theory, numerical simulations, and experiments conducted in this work all indicated that second-order quadrupole interaction and off-resonance play important roles in the spin-locking of the quadrupolar nuclei, and they were responsible for the great loss of the spin-locking signals. The spin-locking for a spin I=3/2 nucleus might be achieved by minimizing the effect of the second-order quadrupole interaction by using a radio frequency (RF) offset. This offset was realized by setting the RF to the opposite position of the isotropic second-order quadrupolar shift of single quantum coherences. 相似文献
6.
The density matrix formalism has been used for computer calculations of the thickness of the excited slice, which determines the spatial resolution, in the case of quadrupolar nuclei havingI=3/2, for varying values of the electric quadrupolar coupling constant and the pulse-duration, when the spins are placed in a very strong magnetic field-gradient (50 T/m). 相似文献
7.
8.
The possibility to obtain 183W CP/MAS spectra has been explored. The choice of suitable set-up compounds, convenient set-up procedures and experimental considerations with respect to contact times, TIS and T1 rho interplay, are discussed. 相似文献
9.
CP/MAS NMR spectra of solid trans-β-carotene were assigned, compared with crystallographic data and discussed in terms of molecular motion. 相似文献
10.
d'Espinose de Lacaillerie JB Fretigny C Massiot D 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2008,192(2):244-251
Structural disorder at the scale of two to three atomic positions around the probe nucleus results in variations of the EFG and thus in a distribution of the quadrupolar interaction. This distribution is at the origin of the lineshape tailing toward high fields which is often observed in the MAS NMR spectra of quadrupolar nuclei in disordered solids. The Czjzek model provides an analytical expression for the joint distribution of the NMR quadrupolar parameters upsilon(Q) and eta from which a lineshape can be predicted. This model is derived from the Central Limit Theorem and the statistical isotropy inherent to disorder. It is thus applicable to a wide range of materials as we have illustrated for 27Al spectra on selected examples of glasses (slag), spinels (alumina), and hydrates (cement aluminum hydrates). In particular, when relevant, the use of the Czjzek model allows a quantitative decomposition of the spectra and an accurate extraction of the second moment of the quadrupolar product. In this respect, it is important to realize that only rotational invariants such as the quadrupolar product can make sense to describe the quadrupolar interaction in disordered solids. 相似文献
11.
Dey KK Prasad S Ash JT Deschamps M Grandinetti PJ 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2007,185(2):326-330
A sensitivity enhancement method based on selective adiabatic inversion of a satellite transition has been employed in a (pi/2)CT-(pi)ST1-(pi/2)CT spectral editing sequence to both enhance and resolve multisite NMR spectra of quadrupolar nuclei. In addition to a total enhancement of 2.5 times for spin 3/2 nuclei, enhancements up to 2.0 times is reported for the edited sites in a mixture of rubidium salts. 相似文献
12.
Ashbrook SE Wimperis S 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2003,162(2):402-416
Several methods are available for the acquisition of high-resolution solid-state NMR spectra of quadrupolar nuclei with half-integer spin quantum number. Satellite-transition MAS (STMAS) offers an approach that employs only conventional MAS hardware and can yield substantial signal enhancements over the widely used multiple-quantum MAS (MQMAS) experiment. However, the presence of the first-order quadrupolar interaction in the satellite transitions imposes the requirement of a high degree of accuracy in the setting of the magic angle on the NMR probehead. The first-order quadrupolar interaction is only fully removed if the sample spinning angle, chi, equals cos(-1)(1/3) exactly and rotor synchronization is performed. The required level of accuracy is difficult to achieve experimentally, particularly when the quadrupolar interaction is large. If the magic angle is not set correctly, the first-order splitting is reintroduced and the spectral resolution is severely compromised. Recently, we have demonstrated a novel STMAS method (SCAM-STMAS) that is self-compensated for angle missets of up to +/-1 degrees via coherence transfer between the two different satellite transitions ST(+)(m(I)=+3/2<-->+1/2) and ST(-)(m(I)=-1/2<-->-3/2) midway through the t(1) period. In this work we describe in more detail the implementation of SCAM-STMAS and demonstrate its wider utility through 23Na (I=3/2), 87 Rb (I=3/2), 27 Al (I=5/2), and 59 Co (I=7/2) NMR. We discuss linewidths in SCAM-STMAS and the limits over which angle-misset compensation is achieved and we demonstrate that SCAM-STMAS is more tolerant of temporary spinning rate fluctuations than STMAS, resulting in less "t(1) noise" in the two-dimensional spectrum. In addition, alternative correlation experiments, for example involving the use of double-quantum coherences, that similarly display self-compensation for angle misset are investigated. The use of SCAM-STMAS is also considered in systems where other high-order interactions, such as third-order quadrupolar effects or second-order quadrupole-CSA cross-terms, are present. Finally, we show that the sensitivity of the experiment can be improved through the use of amplitude-modulated pulses. 相似文献
13.
The optimization of the coherence transfers involved in five, seven and nine-quantum versions of the recently discovered MQMAS technique, is analysed numerically. Data reported in this paper may serve as starting parameters for the experiment set up. An analysis of the intensity and resolution given by each type of experiment is performed, which confirms the need to use very high rf fields for MQ transfers. It follows that five-quantum is achievable rather easily but the use of seven and nine-quantum MAS experiments becomes increasingly difficult due to the demand for high rf power and decreasing sensitivity. The advantages of using the z-filter MQMAS method with respect to a two-pulse sequence are analysed. The method for qualitatively and quantitatively interpret the MQMAS spectra is described. The nature of the spinning side bands along the multiple quantum dimension is explained. It is shown that the rotor synchronization can be conveniently used to eliminate these side bands, but only for 3QMAS experiments. The use of the multiple-quantum method in combination with static samples and VAS, DAS and DOR techniques is finally discussed. 相似文献
14.
Ajoy G Ramakrishna J Bahçeli S Klinowski J 《Solid state nuclear magnetic resonance》2000,16(4):63-338
We derive a complete analytical solution for the powder magic angle spinning (MAS) nuclear magnetic resonance (NMR) lineshape in the presence of second-order quadrupole interaction, considering a radiofrequency (rf) pulse of finite width, a finite MAS frequency, and a non-zero asymmetry parameter. Ix is calculated using two approaches. The first applies time-dependent perturbation theory in the presence of the rf pulse and stationary perturbation theory (SPT) in its absence. The second is based on the Magnus expansion of the density matrix in the interaction representation during the pulse and SPT in its absence. We solve the problem in the laboratory frame using the properties of the Fourier transform and spin operators. Diagonalisation is not required. Both approaches agree well with each other under all conditions and also with the transition probability approach for the central transition. The Magnus expansion exists at all times and the effect of the non-secular terms is negligible. We describe an analytical method of averaging Ix over the Euler angles and simulate the 11B MAS NMR lineshapes for crystalline and vitreous B2O3. A critical analysis is given of all earlier calculations of the MAS NMR lineshape. 相似文献
15.
The merits of SPAM and FAM pulses for enhancing the conversion of triple- to single-quantum coherences in the two-dimensional MQMAS experiment are compared using (87)Rb (spin I=3/2) and (27)Al (I=5/2) NMR of crystalline and amorphous materials. Although SPAM pulses are more easily optimized, our experiments and simulations suggest that FAM pulses yield greater signal intensity in all cases. In conclusion, we argue that, as originally suggested, SPAM and FAM pulses are best implemented in phase-modulated whole-echo MQMAS experiments and that the use of SPAM pulses to record separate echo and antiecho data sets, which are then combined, generally yields lower signal-to-noise ratios. 相似文献
16.
The rf pulse response of I=3/2 spin system experiencing first order quadrupolar splitting is studied using density matrix approach. A general expression is derived in terms of spin populations, quadrupole splitting and duration and amplitude of the rf pulse for calculating the NMR signal arising due to the centre line and satellite resonances for the situation where the impressed rf pulse excites the resonances selectively as well as non-selectively. The necessary 4×4 transformation matrix obtained analytically by diagonalyzing the Hamiltonian are used to get the expression for the centre line response. The satellite signals are obtained in the same way but by using the numerical values of the roots of the related quartics. The widths of the corresponding π/2-pulses are calculated for different initial spin populations. The variations of this pulse-width and the corresponding signal amplitude as a function of satellite splitting are studied. 相似文献
17.
Bonk FA deAzevedo ER Sarthour RS Bulnes JD Freitas JC Guimarães AP Oliveira IS Bonagamba TJ 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2005,175(2):226-234
This article presents the realization of many self-reversible quantum logic gates using two-qubit quadrupolar spin 3/2 systems. Such operations are theoretically described using propagation matrices for the RF pulses that include the effect of the quadrupolar evolution during the pulses. Experimental demonstrations are performed using a generalized form of the recently developed method for quantum state tomography in spin 3/2 systems. By doing so, the possibility of controlling relative phases of superimposed pseudo-pure states is demonstrated. In addition, many aspects of the effect of the quadrupolar evolution, occurring during the RF pulses, on the quantum operations performance are discussed. Most of the procedures presented can be easily adapted to describe selective pulses of higher spin systems (>3/2) and for spin 1/2 under J couplings. 相似文献
18.
Taiichi Yamada 《Acta Physica Hungarica A》2003,18(2-4):139-140
The structure of strangeness S = ?2 nuclei is discussed with the emphasis on the structure change due to the Λ particles and the hyperon mixing in the ground states due to the ΛΛ-ΞN-∑∑(-H) coupling. 相似文献
19.
The rf pulse response of I=3/2 spin system experiencing first order quadrupolar splitting is studied using density matrix approach. A general expression is derived in terms of spin populations, quadrupole splitting and duration and amplitude of the rf pulse for calculating the NMR signal arising due to the centre line and satellite resonances for the situation where the impressed rf pulse excites the resonances selectively as well as non-selectively. The necessary 4×4 transformation matrix obtained analytically by diagonalyzing the Hamiltonian are used to get the expression for the centre line response. The satellite signals are obtained in the same way but by using the numerical values of the roots of the related quartics. The widths of the corresponding π/2-pulses are calculated for different initial spin populations. The variations of this pulse-width and the corresponding signal amplitude as a function of satellite splitting are studied. 相似文献
20.
A method of obtaining high polarization and pure spin states of impurity nuclei with a moderately strong quadrupole interaction
in solid diamagnetic hosts whose nuclei have spin 1/2, a large g factor (like 1H and 19F), and a high degree of polarization is proposed. The method employs cross-relaxation transitions of the impurity nuclei
with the host spins (with adiabatic variation of the external magnetic field) and simple radio-frequency pulses that invert
the host nuclei or give rise to two-spin resonance of the host and impurity nuclei.
Pis’ma Zh. éksp. Teor. Fiz. 68, No. 7, 539–543 (10 October 1998) 相似文献