首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
熊宗刚  杜娟  张现周 《计算物理》2019,36(6):733-741
采用第一性原理的计算方法研究GeSe纳米片结构掺杂V和VII族元素对其电子结构、形成能和跃迁能级的影响.结果表明:无论是掺杂V族还是VII族元素,体系的形成能均随杂质半径的增加而增加.V族元素掺杂体系的跃迁能级随杂质原子半径的增加而降低,而VII元素掺杂的体系却随杂质原子半径的增加而增加.其中,F、Cl、Br和I的掺杂为n型施主浅能级杂质,而N、P和As掺杂为p型受体深能级杂质.为相关的实验研究提供了理论参考.  相似文献   

2.
方志杰  朱基珍  周江  莫曼 《中国物理 B》2012,21(8):87105-087105
Using the first-principles methods,we study the formation energetics properties of intrinsic defects,and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO2.Intrinsic defects,some typical acceptortype,and donor-type extrinsic defects in their relevant charge state are considered.By systematically calculating the formation energies and transition energy,the results of calculation show that,V Cu,O i,and O Cu are the relevant intrinsic defects in CuCrO2 ;among these intrinsic defects,V Cu is the most efficient acceptor in CuCrO2.It is found that all the donor-type extrinsic defects have difficulty in inducing n-conductivity in CuCrO2 because of their deep transition energy level.For all the acceptor-type extrinsic defects,substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO2.Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO2.  相似文献   

3.
The evolution of the electronic structure of CeNi4M (M = Fe, Co, Ni, Cu) intermetallics depending on the type of nickel substitutional impurity is explored. We have calculated band structures of these compounds and considered options of substituting one atom in nickel 3d sublattice in both types of crystallographic positions: 2c and 3g. The analysis of total energy self-consistent calculations has shown that positions of 2c type are more energetically advantageous for single iron and cobalt impurities, whereas a position of 3g type is better for a copper impurity. The Cu substitutional impurity does not change either the nonmagnetic state of ions or the total density at the Fermi level states. Fe and Co impurities, on the contrary, due to their considerable magnetic moments, induce magnetization of 3d states of nickel and cause significant changes in the electronic state density at the Fermi level.  相似文献   

4.
Through the first principle calculation, electronic properties of monolayer MoS2 doped with single, double, triple and tetra-atoms of P, Cl, O, Se at the surface S site are discussed. Among the substitutional dopant, our calculation results show that when P atoms are doped on a monolayer MoS2, a shift in the Fermi energy into the valence band is observed, making the system p-type. Meanwhile, band gap gradually decreases as increasing the number of P atoms. On the contrary, Cl is identified as a suitable n-type dopant. It is observed that Cl for initial three dopant behaved as magnetic and afterwards returned to non-magnetic behavior. The band gap of the Cl doped system is also dwindling gradually. Finally, O and Se doped systems have little effect on electronic properties near band gap. Such doping method at the S site, and the TDOS and PDOSs of each doping system provide a detailed of understanding toward working mechanism of the doped and the intrinsic semiconductors. This doping model opens up an avenue for further clarification in the doping systems as well as other dopant using this method.  相似文献   

5.
《Current Applied Physics》2019,19(6):690-696
We perform density functional theory calculation to investigate the structural and electronic properties of various two-dimensional transition metal dichalcogenides, MX2 (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, or W, and X=S or Se), and their strain-induced phase transitions. We evaluate the relative stability and the activation barrier between the octahedral-T and the trigonal-H phases of each MX2. It is found that the equilibrium and phase transition characteristics of MX2 can be classified by the group to which its metal element M belongs in the periodic table. MX2 with M in the group 4 (Ti, Zr, or Hf), forms an octahedral-T phase, while that with an M in the group 6 (Cr, Mo, or W) does a trigonal-H phase. On the other hand, MX2 with M in the group 5 (V, Nb, or Ta), which is in-between the groups 4 and 6, may form either phase with a similar stability. It is also found that their electronic structures are strongly correlated to the structural configurations: mostly metallic in the T phase, while semiconducting in the H phase, although there are some exceptions. We also explore the effects of an applied stress and find for some MX2 materials that the resultant strain, either tensile or compressive, may induce a structural phase transition by reducing the transition energy barrier, which is, in some cases, accompanied by its metal-insulator transition.  相似文献   

6.
The doping effects of several transition metal impurities for monoclinic BiVO4 are studied by DFT calculations. The results indicated that transition metal doping could reduce the effective mass of holes on the top of valence band, except Zr doping. In particular, we found the “e” states of impurities have significant influence on the photophysical properties of BiV1 − xMxO4 under visible-light irradiation.  相似文献   

7.
We have calculated the energy and lineshape of the 1s → 2px,y transition for a hydrogenic impurity located in a quantum well. Due to the dependence of the transition energy on the impurity location, the absorption lineshape is very sensitive to the doping profile. The spectrum, in general, exhibits two peaks, arising from impurities located near the center and the edges of the well.  相似文献   

8.
《Physics letters. A》2019,383(28):125864
The electronic structure and thermoelectric properties of monolayer Bi2Te2Se were studied by density functional theory and semi-classical Boltzmann transport equation. The band gap with TB-mBJ can be improved for monolayer Bi2Te2Se. Monolayer Bi2Te2Se have ultra-low thermal conductivity comparing with other well-known two-dimensional materials. The monolayer Bi2Te2Se can improve electrical conductivities. ZT increases with increasing temperature for monolayer Bi2Te2Se. Comparing to GGA, TB-mBJ has larger ZT value in p-type doping. Monolayer Bi2Te2Se have larger ZT comparing with other well-known two-dimensional materials. Our calculated results show that our calculation greatly underestimates ZT value, therefore, monolayer Bi2Te2Se should have a higher ZT value.  相似文献   

9.
莫曼  曾纪术  何浩  张喨  杜龙  方志杰 《物理学报》2019,68(10):106102-106102
研制开发新型的光电材料对促进社会经济发展具有重要的科学意义和实用价值.利用宽禁带CuInO_2铟基材料实现全透明光电材料是目前深入研究的热点.通过基于密度泛函的第一性原理计算方法,本文计算出掺杂元素Mg, Be, Mn在CuInO_2的形成能.计算结果表明,施主类缺陷(如掺杂元素替代Cu原子或进入间隙位置)由于较高的形成能和较深的跃迁能级,很难在CuInO_2材料中出现N型导电;而受主缺陷中,在氧原子化学势极大的情况下, Mg原子替代In能成为CuInO_2理想的受主缺陷.计算结果可为制备性能优异的CuInO_2材料提供指导.  相似文献   

10.
Using the first-principles band-structure method, we investigate the p-type doping properties and band structural parameters of the random Ga1−xInxN1−yAsy quaternary alloys. We show that the MgGa substitution is a better choice than ZnGa to realize the p-type doping because of the lower transition energy level and lower formation energy. The natural valence band alignment of GaAs and GaInNAs alloys is also calculated, and we find that the valence band maximum becomes higher with the increasing In composition. Therefore, we can tailor the band offset as desired which is helpful to confine the electrons effectively in optoelectronic devices.  相似文献   

11.
The formation energies and transition energy levels of intrinsic defects in hexagonal BN (h-BN) bilayer and monolayer have been studied by first-principles calculations based on density functional theory. Our calculated results predict that excellent intrinsic p-type and n-type conductivities are very difficult to be realized in h-BN bilayer and monolayer. This is because of the high formation energies of acceptor-like defects (≥4.6 eV ) and the rather deep transition energy levels of donor-like defects (≥2.0 eV ). In order to obtain h-BN layers with more efficient p-type and n-type conductivity, extrinsic doping using foreign impurities is necessary.  相似文献   

12.
We study both monolayer and bilayer graphene transport properties taking into account the presence of correlations in the spatial distribution of charged impurities. In particular we find that the experimentally observed sublinear scaling of the graphene conductivity can be naturally explained as arising from impurity correlation effects in the Coulomb disorder, with no need to assume the presence of short-range scattering centers in addition to charged impurities. We find that also in bilayer graphene, correlations among impurities induce a crossover of the scaling of the conductivity at higher carrier densities. We show that in the presence of correlation among charged impurities the conductivity depends nonlinearly on the impurity density ni and can increase with ni.  相似文献   

13.
Using the first-principles methods,we study the formation energetics properties of intrinsic defects,and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO2.Intrinsic defects,some typical acceptortype,and donor-type extrinsic defects in their relevant charge state are considered.By systematically calculating the formation energies and transition energy,the results of calculation show that,V Cu,O i,and O Cu are the relevant intrinsic defects in CuCrO2 ;among these intrinsic defects,V Cu is the most efficient acceptor in CuCrO2.It is found that all the donor-type extrinsic defects have difficulty in inducing n-conductivity in CuCrO2 because of their deep transition energy level.For all the acceptor-type extrinsic defects,substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO2.Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO2.  相似文献   

14.
本文利用基于密度泛函理论的第一性原理平面波赝势方法分别计算了本征及过渡金属掺杂单层MoS_2的晶格参数、电子结构和磁性性质.计算结果显示,过渡金属掺杂所引起的晶格畸变与杂质原子的共价半径有联系,但并不完全取决于共价半径的大小.分析电子结构可以看到,VIIB、VIII和IB族杂质中除Ag和Re外的掺杂体系都对外显示磁性,磁矩主要集中在掺杂的过渡金属原子上.掺杂体系的禁带区域都出现了数目不等的杂质能级,这些杂质能级主要由杂质的d、S的3p和Mo的4d轨道组成.  相似文献   

15.
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of N monodoping and (Li, N) codoping in ZnO. The results indicate that monodoping of N in ZnO favors a spin-polarized state with a magnetic moment of 0.95 μB per supercell and the magnetic moment mainly comes from the unpaired 2p electrons of N and O atoms. In addition, it was found that monodoping of N in ZnO is a weak ferromagnet and it is the spin-polarized O atoms that mediate the ferromagnetic exchange interaction between the two N atoms. Interestingly, by Li substitutional doping at the cation site (LiZn), the ferromagnetic stability can be increased significantly and the formation energy can be evidently reduced for the defective system. Therefore, we think that the enhancement of ferromagnetic stability should be attributed to the accessorial holes and the lower formation energy induced by LiZn doping.  相似文献   

16.
陈立晶  李维学  戴剑锋  王青 《物理学报》2014,63(19):196101-196101
基于密度泛函理论的第一性原理平面波超软赝势法对ZnO(Mn,N)体系的晶格结构、形成能、态密度以及电荷密度进行了计算和理论研究.研究结果表明,Mn和N共掺杂ZnO体系具有更低的杂质形成能和更高的化学稳定性,更加适合p型掺杂.Mn和N以1:2的比例掺杂时,体系的形成能降低,体系更稳定;同时,体系中形成双受主能级缺陷,使得杂质固溶度增大,体系中载流子数增多,p型化特征更明显.此外,研究发现相比于N单掺杂ZnO体系,Mn和N原子共掺杂ZnO体系有更多的杂质态密度穿越费米能级,在导带与价带之间形成更宽的受主N 2p的杂质态,同时空穴有效质量变小.与Mn-N共掺杂体系相比,Mn-2N共掺杂体系的受主杂质在费米能级附近的态密度更加弥散,非局域化特征明显.因此,Mn-N共掺杂有望成为p型掺杂的更有效的手段.  相似文献   

17.
The evidence in favour of the assumption that impurities of V group elements creates defects of the MeO′4 type (centres of luminescence), Me?3 and V?, or WO3 (capture centres) which are responsible for recombination afterglow different from the steady-state luminescence spectral distribution (Me = As, Sb, Nb, Ta; V0 - oxygen vacancy) are presented. These same impurities, and phosphorous, lead to quenching of luminescence observed as afterglow with excitation quanta greater than 6.3 eV. This corresponds to the valued of the energy gap. Experimental data together with results of thermodynamic analysis lead to the conclusion that the luminescence of CaWO4 and of other undoped oxygen containing compounds of transition elements luminophors is caused by direct self-activation connected with ability of these elements to convert spontaneously into a lower valency state and to form variable phases (non-stoichiometric compounds). It is proposed that in case of CaWO4 centres of luminescence are formed by W5+.  相似文献   

18.
The electronic structures of doped Sb2O5 by IV-family elements (Si, Ge and Sn) were examined using the density function theory (DFT). Density of states (DOSs) results showed that the substituted IV-family elements act as acceptors in Sb2O5. Partial DOSs indicates that by substituting Ge(Ge Sb ) or Sn(Sn Sb ), there may be a larger contribution to the total DOSs near E F than by substituting Si, which suggests that doping Ge or Sn in Sb2O5 produces better ptype doping compared to doping Si. Formation energy results show that IV-family elements are more likely to exist in the substituted position rather than in the interstitial position in Sb2O5, decreasing any self-compensation effect and making it easier for IV-family elements to realize ptype doping in Sb2O5. Ionization energy results show that Ge Sb or SnSb, two among the three impurities considered, act as shallow acceptors in Sb2O5, thus producing a higher concentration of holes.   相似文献   

19.
At present, the n-type doping behavior of ZnS is still under debate. Some groups have reported that it is difficult to obtain low-resistivity n-type ZnS, while others think it is easy. Our first-principles calculations on the n-type doping of group IIIA elements strongly support the former viewpoint. We find that, although AlS?i, GaS?i, and InS?i are shallow donors, their formation energy is very high at the conduction band minimum (CBM). Thus they can not contribute to the n-type conductivity. Other impurities are all deep donors with high formation energy at the CBM, thus having no contributions either. We believe that our results can provide an understanding of the difficulties of n-type doping of ZnS.  相似文献   

20.
3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究   总被引:5,自引:0,他引:5       下载免费PDF全文
赵宗彦  柳清菊  张瑾  朱忠其 《物理学报》2007,56(11):6592-6599
采用基于密度泛函理论的平面波超软赝势方法研究了纯锐钛矿相TiO2及掺杂3d过渡金属TiO2的几何、电子结构及光学性质. 计算结果表明掺杂能级的形成主要是掺杂过渡金属3d轨道的贡献,掺杂能级在禁带中的位置是决定TiO2吸收带边能否出现红移的重要因素. Cr,Mn,Fe,Ni,Co,Cu掺杂使TiO2的吸收带边产生红移,并在可见光区有一定的吸收系数; Sc,Zn掺杂使TiO2的吸收带边产生蓝移,但在可见光区有较大的吸收系数;掺V不但使TiO2的吸收带边产生红移,增强了在紫外光区的光吸收,而且在可见光区有非常大的吸收系数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号