首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
原位电化学拉曼光谱是一种重要的光谱电化学技术.基于超微电极的原位电化学拉曼光谱将拉曼光谱反映的结构信息与电极表面的电化学过程从实验上严格对应和关联,为深刻理解电化学反应机理提供依据.本文综述了采用超微电极作为工作电极的原位电化学拉曼光谱的研究方法和应用进展,总结了应用超微电极作为工作电极开展电化学拉曼光谱实验的方法和具有表面增强拉曼活性的超微电极制备方法,展示了如何利用在超微电极表面获得的拉曼光谱与界面电化学过程的严格关联研究单个锌颗粒电化学氧化过程、吡啶分子在Au电极表面的电化学吸附过程,以及如何利用该技术能以高的信噪比和灵敏度同时测量光电流与分子反应这一特性研究对巯基苯胺选择性光氧化反应.采用超微电极作为工作电极的原位电化学拉曼光谱技术极大拓展了拉曼光谱技术的研究范围,有望成为探索(光)电化学反应的有力工具.  相似文献   

2.
The quartz crystal microbalance method (QCM), in combination with electrochemical impedance spectroscopy (EIS), has been utilized to monitor in situ anti-human IgG adsorption on several Au-based surfaces, bare Au, nanogold/4-aminothiophenol (4AT)/Au, and multi-walled carbon nanotubes (MWCNT)/Au, and succeeding human IgG reactions. Also, the immobilization protocol of anti-human IgG via its glutaraldehyde (GA) cross-linking with self-assembled 4AT on an Au electrode and the subsequent surface immunoreaction were examined. The resonant frequency (f(0)) and the motional resistance (R(1)) of the piezoelectric quartz crystal (PQC) as well as electrochemical impedance parameters were measured and discussed. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of the ferricyanide/ferrocyanide couple were examined before and after electrode modification, the antibody adsorption and antibody-antigen reactions. We found that the amount for antibody adsorption was the greatest on the colloid Au modified surface, and that at MWCNT ranked the second, while specific bioactivity was almost identical on the four kinds of surfaces. Two parameters simultaneously obtained at the colloid Au modified surface, Deltaf(0) and DeltaC(s) (interfacial capacitance), have been used to estimate the association constant of the immunoreaction.  相似文献   

3.
In-situ Raman/SERS studies of molecular adsorption/reaction behaviors at well-defined electrochemical interfaces are important for understanding the fundamentals of electrochemical processes. However, it is still a great challenge to perform such studies on model single-crystal surfaces as the smooth surface cannot support surface plasmon resonance (SPR). In this work, shell-isolated nanoparticle-enhanced Raman spectroscopy was combined with an electrochemical method (EC-SHINERS) to study the adsorption and redox transformation of a resonant molecule viologen HS-8V8H at Au(hkl) single-crystal electrodes. Changes in the molecular structure with potential were identified on different single-crystal surfaces, which explained the transformation process of viologen from V2 + state to V+ and then V0. Facet-dependent SERS enhancement was also observed, which results from the different imaginary part of the dielectric function on Au(111), Au(100) and Au(110), and is supported by the FEM simulations. Furthermore, a nonlinear resonant Raman process has been directly observed in our experiments, which is consistent with the simulation results. These findings increase our understanding of the electrochemical behavior of molecules in model systems.  相似文献   

4.
Three different single crystals, Au(111), Au(332), and Au(331), were used as the substrate for palladium deposition in the underpotential deposition (UPD) regime. The Au(111) single crystal was used for control experiments to compare the behavior of the vicinal surfaces. Cyclic voltammetry in 0.1 M sulfuric acid solution, as well as electrochemical impedance spectroscopy (EIS) were used to study the hydrogen adsorption on the Pd thin films. Our results suggest that the voltammetric peaks at approximately 0.3 V versus the reversible hydrogen electrode (RHE) are related to the adsorption of hydrogen at large palladium terraces, and that at least two adjacent Pd rows are needed in order for the adsorption to take place. Further cycling to more positive potentials leads to the oxidation and slow dissolution of the Pd film. The behavior of the oxidation cycles is explained in terms of a higher stability of Pd at the steps.  相似文献   

5.
研究Au(111)和Au(100)表面非离子型氟表面活性剂FSN自组装膜的电化学行为.电化学扫描隧道显微术和循环伏安法测试表明,在0~0.8 V电位区间,FSN自组装膜未发生氧化还原,均一性好,可稳定地存在于电极表面,并显著抑制硫酸根离子在电极表面的吸附和Au单晶表面的重构.在FSN自组装膜Au单晶电极的初始氧化阶段,Au(111)表面有少量突起,而Au(100)表面呈现台阶剧烈变化,但FSN自组装膜的吸附结构没有改变.与Au(100)表面相比,Au(111)表面形成的FSN自组装膜可更有效地抑制Au表面的氧化.  相似文献   

6.
The creation of a highly enhanced electromagnetic (EM) field underneath a scanning tunneling microscope (STM) tip enables Raman spectroscopic studies of organic submonolayer adsorbates at atomically smooth single crystalline surfaces. To study the sensitivity of this technique, tip-enhanced resonance Raman (TERR) spectra of the dye malachite green isothiocyanate on Au(111) in combination with the corresponding STM images of the probed surface region were analyzed. The detection limit for unambiguous identification of the dye and semiquantitative determination of the surface coverage reaches < or =0.7 pmol/cm(2), or approximately five molecules present in the enhanced-field region, which is confirmed by STM images. Because of well-defined adsorption sites at atomically smooth Au(111) surfaces, no variation in band positions or relative band intensities was observed at the single- or few-molecule detection level when employing TERR spectroscopy.  相似文献   

7.
谢泳  李筱琴  任斌  田中群 《电化学》2001,7(1):66-70
利用沉积在粗糙金电极上的过渡金属超薄层电极技术 ,我们获得了氢及一氧化碳在Rh和Pt表面上吸附的拉曼信号 ,并对两者之间的相互作用进行了分析 ..我们还进行了二氧化碳在这两种金属表面的还原行为的初步研究 ,以及对不同方式获得的一氧化碳吸附拉曼信号的特点进行了分析 .  相似文献   

8.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).  相似文献   

9.
In situ vibrational spectroscopy can provide molecular-level mechanistic insights missing from purely electrochemical measurements. Surface enhanced Raman spectroscopy (SERS) is a particularly promising method and is used in aqueous and nonaqueous studies of a variety of electrode reactions. Enhancement of the weak Raman signal is achieved by structuring the electrode surface or by use of SERS probes. This review article highlights the recent use of SERS to study several important electrode reactions: oxygen reduction and evolution, carbon monoxide oxidation and carbon dioxide reduction and the electrocatalytic oxidation of small organic molecules such as formic acid.  相似文献   

10.
Au-Cu双金属合金纳米颗粒对包括CO氧化和CO2还原等在内的多个反应有较好的催化活性,然而关于其表面性质的研究却相当匮乏。在此工作中,我们通过对低覆盖度的Au/Cu(111)和Cu/Au(111)双金属薄膜退火,制备出了单原子级分散的Au/Cu(111)和Cu/Au(111)合金化表面,并利用高分辨扫描隧道显微镜(STM)和扫描隧道谱(STS)进一步研究了掺杂原子的电子性质及其对CO吸附行为的影响。研究发现,分散在Cu(111)表面的表层和次表层Au单原子在STM上表现出不同衬度。在-0.5 e V附近,前者表现出相较于Cu(111)明显增强的电子态密度,而后者则明显减弱。吸附实验表明表层Au单原子对CO的吸附能力并没有得到增强,甚至会减弱其周围Cu原子的吸附能力。与Au在Cu(111)表面较好的分散相反,Cu原子倾向于钻入Au(111)的次表层,并且形成多原子聚集体。且Cu原子受Au(111)衬底吸电子作用的影响,其对CO的吸附能力明显减弱。这个研究结果揭示了合金表面的微观结构与性质的关联,为进一步阐明Au-Cu双金属催化剂的表面反应机理提供参考。  相似文献   

11.
Friction force measurements performed by means of an atomic force microscope (AFM) under electrochemical conditions on a pure Au(111) electrode surface and one modified with a foreign metal are presented; after deposition of a (sub)monolayer copper on a Au(111) single crystal electrode a large increase of the friction force is observed compared to the pure Au(111) electrode surface; the extent of the increase not only depends on the copper coverage, but also on the normal load and may be explained by a higher energy dissipation due to motion of the sulfate anions adsorbed on the copper atoms induced by the AFM tip.  相似文献   

12.
The adsorption of cytidine at the mercury film electrodes and at the Au (111) single crystal electrode has been investigated. Some kinetic aspects such as the influence of pH and temperature on the formation or dissolution of cytidine adlayer on the pyrolytic graphite electrode covered by a mercury film or on the Au (111) have been studied.  相似文献   

13.
Quantitative subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was used to determine the conformation and orientation of sodium dodecyl sulfate (SDS) molecules adsorbed at the single crystal Au(111) surface. The SDS molecules form a hemimicellar/hemicylindrical (phase I) structure for the range of potentials between -200 ≤ E < 450 mV and condensed (phase II) film for electrode potentials ≥500 mV vs Ag/AgCl. The SNIFTIRS measurements indicate that the alkyl chains within the two adsorbed states of SDS film are in the liquid-crystalline state rather than the gel state. However, the sulfate headgroup is in an oriented state in phase I and is disordered in phase II. The newly acquired SNIFTIR spectroscopy measurements were coupled with previous electrochemical, atomic force microscopy, and neutron reflectivity data to improve the current existing models of the SDS film adsorbed on the Au(111) surface. The IR data support the existence of a hemicylindrical film for SDS molecules adsorbed at the Au(111) surface in phase I and suggest that the structure of the condensed film in phase II can be more accurately modeled by a disordered bilayer.  相似文献   

14.
用电化学循环伏安法和电化学石英晶体微天平(EQCM)技术研究了Sb在Au电极上不可逆吸附的电化学过程. 研究结果表明, 在-0.25 V到0.18 V(vs SCE)范围内, Sb可在Au电极上稳定吸附, 并且在0.15 V附近出现特征氧化还原峰. 根据EQCM实验数据, 在电位0.18 V时, Sb在Au电极上的氧化产物是Sb2O3; 同时Sb的吸附阻止了电解液中阴离子和水在Au电极上的吸附. 当电极电位超过0.20 V时, Sb2O3会被进一步氧化成Sb5+化合物, 同时逐渐从Au电极表面脱附.  相似文献   

15.
Oligonucleotides modified by a hexamethylene linker group adsorb on gold electrodes via Au-S bond formation. We have obtained novel data for adsorption of thiol-modified (HS) single-strand HS-10A and double-stranded HS-10AT oligonucleotides and for analogous thiol-free 10A (A = adenine) and 10T (T = thymine) nonspecifically adsorbed as reference molecules. Mercaptohexanol has served as a second reference molecule. The data are based on cyclic and differential pulse voltammetry, interfacial capacitance data, and in situ scanning tunneling microscopy (STM) directly in an aqueous buffer solution, with electrochemical potential control of both the sample electrode and the tip. All the data are based on single-crystal, atomically planar Au(111)-electrode surfaces. The high sensitivity of such surfaces provides accurate HS-10A and HS-10AT electrode coverages on the basis of the reductive desorption of the Au-S bond. The coverage is high and in keeping with dense monolayers of adsorbed HS-10A and HS-10AT in an upright or tilted orientation, with the oligonucleotide backbone repelled from the strongly negatively charged electrode surface. Adsorbed thiol-free 10A only gives a Au(111)-reconstruction peak, while 10T shows a subtle pattern involving pronounced voltammetric adsorption peaks indicative of both nonspecific adsorption via single thymine units and potential-dependent structural reorganization in the surface layer. In situ STM supports these findings at the molecular level. In situ STM of HS-10A discloses large, highly ordered domains at strongly negative sample potentials. Reversible domain formation and disordering could, moreover, be controlled by an electrochemical potential variation in the negative and positive directions, respectively. 10A and 10T did not form ordered adsorbate domains, substantiating that domain formation rests on adsorption of thiol-modified oligonucleotide adsorption in an upright or tilted orientation. The comprehensive, high-resolution information reported may hold prospects for single-molecule electronic conduction and molecular-scale mapping of oligonucleotide hybridization.  相似文献   

16.
《结构化学》2020,39(8):1372-1376
Since the discovery of surface-enhanced Raman spectroscopy(SERS), it has been rapidly applied to the in situ study of electrochemical interfaces. Shell-isolated nanoparticle-enhanced Raman spectroscopy(SHINERS) stands out as one of the most powerful tools for the in situ study of interfacial structures, especially on well-defined single crystal surface. This perspective paper focuses on the study of interfacial structures with the SHINERS technique, including the electronic structure of heterogeneous metal surfaces, and the detection of molecules absorbed on the surface, as well as intermediate species, during electrochemical reactions. Finally, we present an outlook on future research and development of SHINERS for studying interfacial structures.  相似文献   

17.
The extensive literature data on the adsorptive properties and reactivity of iron single crystal surfaces, films, and supported catalysts is reviewed. The intent of this paper is (i) to narrow the present gap between the surface chemistry discipline and catalysis research, and (ii) to gain a detailed insight into common catalyst characterization procedures.The interaction of oxygen, hydrogen, carbon monoxide, and nitrogen with the single crystal surfaces (110), (100), and (111) as well as with film specimens is dealt with. In addition to the adsorptive properties of well-defined iron oxide specimens also the reactivity of oxidized single crystal substrates towards hydrogenation is treated. Comprehension of both the adsorptive properties and the reactivity of metallic as well as of oxidized iron surfaces is required to understand what molecular phenomena proceed during a chemisorption experiment on a catalyst sample. Volumetric gas adsorption, temperature-programmed desorption, Mössbauer spectroscopy, and infrared spectroscopy experiments are discussed in relation to the above fundamental studies.The unfathomed discrepancy between the hydrogen adsorption features of single crystals and high-disperse supported iron catalysts can be appreciated from surface science constituents. The presence of oxygen at the metal-UHV interface of small metallic iron particles is made plausible. An alternative explanation for the magnetic anisotropy of magnesia- and silica-supported iron particles is advanced (exchange anisotropy).  相似文献   

18.
This paper reports on the interface processes of 1,10-phenanthroline (phen) at a roughened Au electrode by surface-enhanced Raman scattering (SERS) for the first time. Both the adsorption and coordination of phen on the roughened gold electrode have been studied. In comparison to the normal Raman spectrum of phen monohydrate, the frequency and relative intensity change significantly in the SERS spectra. As evidenced by cyclic voltammetry, the electrochemical behavior of the Au electrode is strongly modified by the adsorbed phen. It was found that a new pair of redox peaks appeared in the cyclic voltammogram only when both phen and X (X = Cl-, Br-) were present. Information on coordination bonds of Au-N and Au-X as well as on adsorbed bonds of Au-N(ad) and Au-X(ad), was obtained by the SERS spectra. In situ SERS investigations together with electrochemical measurements convincingly prove the formation of surface complexes 1,10-phenAu2X6 or [1,10-phenAuX2]AuX4 during the electro-oxidation process of Au while phen and X coadsorbed on the surface.  相似文献   

19.
Adlayers of different azobenzene-functionalized derivatives of the triazatriangulenium (TATA) platform on Au(111) surfaces were studied by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), gap-mode surface-enhanced Raman spectroscopy (gap-mode SERS), and cyclic voltammetry (CV). The chemical composition of the adlayers is in good agreement with the molecular structure, i.e., different chemical groups attached to the azobenzene functionality were identified. Furthermore, the presence of the azobenzene moieties in the adlayers was verified by the vibration spectra and electrochemical data. These results indicate that the molecules remain intact upon adsorption with the freestanding functional groups oriented perpendicularly to the TATA platform and thus also to the substrate surface.  相似文献   

20.
Substituted bis(phthalocyaninato) rare earth complexes ML2 (M = Y and Ce; L = [Pc(OC8H17)8]2, where Pc = phthalocyaninato) were adsorbed onto single crystalline Au(111) electrodes from benzene saturated with either YL2 or CeL2 complex at room temperature. In situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) were used to examine the structures and the redox reactions of these admolecules on Au(111) electrodes in 0.1 mol dm(-3) HClO4. The CVs obtained with YL2- and CeL2-coated Au(111) electrodes respectively contained two and three pairs of redox peaks between 0 and 1.0 V (versus reversible hydrogen electrode). STM molecular resolution revealed that YL2 and CeL2 admolecules were imaged as spherical protrusions separated by 2.3 nm, which suggests that they were oriented with their molecular planes parallel to the unreconstructed Au(111)-(1 x 1). Both molecules when adsorbing from approximately micromolar benzene dosing solutions produced mainly ordered arrays characterized as (8 x 5 radical3)rect (theta = 0.0125). The redox reactions occurring between 0.2 and 1.0 V caused no change in the adlayer, but they were desorbed or oxidized at the negative and positive potential limits. The processes of adsorption and desorption at the negative potentials were reversible to the modulation of potential. Electrochemical impedance spectroscopy (EIS) and CV measurements showed that YL2 and CeL2 adlayers could block the adsorption of perchlorate anions and mediating electron transfer at the Au(111) electrode, leading to the enhancement of charge transfer for the ferro/ferricyanide redox couple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号