首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrode materials for supercapacitors are at present commonly evaluated and selected by their mass specific capacitance (CM, F g−1). However, using only this parameter may be a misleading practice because the electrode capacitance also depends on kinetics, and may not increase simply by increasing material mass. It is therefore important to complement CM by the practically accessible electrode specific capacitance (CE, F cm−2) in material selection. Poly[3,4-ethylene-dioxythiophene] (PEDOT) has a mass specific capacitance lower than other common conducting polymers, e.g. polyaniline. However, as demonstrated in this communication, this polymer can be potentiostatically grown to very thick films (up to 0.5 mm) that were porous at both micro- and nanometer scales. Measured by both cyclic voltammetry and electrochemical impedance spectrometry, these thick PEDOT films exhibited electrode specific capacitance (CE, F cm−2) increasing linearly with the film deposition charge, approaching 5 F cm−2, which is currently the highest amongst all reported materials.  相似文献   

2.
The double layer capacitance vs potential, Cdl(E), curve of Pt(1 1 1) electrodes in aqueous KClO4 and NaF solutions exhibits a maximum at about 0.1 V vs SCE. Since with lowered solute concentrations no Gouy–Chapman minimum can be found in Cdl(E), the peak is not related to the potential of zero free charge.  相似文献   

3.
Differential capacitances were measured in 1-propyl-3-methylimidazolium tetrafluoroborate (PMIBF4) ionic liquid at three different electrode substrates (Hg, GC (glassy carbon) and Au) as a function of potential. Essentially different capacitance–potential curves were obtained at different electrodes. From the parabolic electrocapillary curve measured at dropping Hg electrode in PMIBF4, the potential of zero charge (PZC) was found to be −0.31 V vs. Ag/AgCl (wire). However, the capacitance–potential curve at Hg electrode was found not to show any valley related to the PZC, whereas at GC and Au electrodes a minimum was observed at 0.29 and −0.51 V, respectively. The results are in disagreement with the recent theoretical study which implies that the capacitance–potential curve should be of bell shape with the maximum value of capacitance at PZC. The parabolic capacitance–potential curve similar to those obtained in inorganic molten salts was also observed for the first time at GC electrode. Probable causes of the difference in their capacitance–potential curves were also discussed.  相似文献   

4.
The electrochemical reduction of molecular oxygen (O2) has been performed at gold electrodes modified with a submonolayer of a self-assembly (sub-SAM/Au) of a thiol compound (typically cysteine (CYST)) in O2-saturated 0.5 M KOH. At bare gold electrode O2 reduction reaction proceeds irreversibly, while this reaction is totally hindered at gold electrodes with a compact structure of CYST over its surface. The partial reductive desorption of the compact CYST monolayer was achieved by controlling the potential of the CYST/Au electrode, leading to the formation of a submonolayer coverage of the thiol compound over the Au electrode surface (sub-SAM/Au), at which the CYST molecules selectively block the Au(1 0 0) and Au(1 1 0) fractions (the so-called rough domains) of the polycrystalline Au while the Au(1 1 1) component (the so-called smooth domains) remains bare (i.e., uncovered with CYST). This sub-SAM/Au electrode extraordinarily exhibits a quasi-reversible two-electron reduction of molecular oxygen (O2) in alkaline medium with a peak separation (ΔEp) between the cathodic and anodic peak potentials (Epc,Epa) of about 60 mV. The ratio of the anodic current to the cathodic one is close to unity. The formal potential (Eo) of this reaction is found to equal −150 mV vs. Ag/AgCl/KCl(sat.).  相似文献   

5.
In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H2O2. Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl4 and PtBr2. Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10?3 to 0.56 mM and 2.0 × 10?3 to 0.66 mM, respectively. The detection limits were 7.5 × 10?4 mM for XO/Au/PVF/Pt and 6.0 × 10?4 mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated.  相似文献   

6.
Oxygen reduction reaction (ORR) has been studied on the low index planes of Pd modified with a monolayer of Pt (Pt/Pd(hkl)) in 0.1 M HClO4 with the use of hanging meniscus rotating disk electrode. The activity for ORR on bare Pd(hkl) electrode depends on the surface structure strongly, however, voltammograms of ORR on Pt/Pd(hkl) electrodes do not depend on the crystal orientation. The specific activities of Pt/Pd(hkl) electrodes at 0.90 V (RHE) are higher than that on Pt(1 1 0) which has the highest activity for ORR in the low index planes of Pt. The mass activity on Pt/Pd(hkl) electrode is 7 times as high as a commercial Pt/C catalyst.  相似文献   

7.
In the present work, a more sensitive and conveniently usable electrode sensor for a trace analysis of heavy metal was developed by using Bi nanopowder synthesized by levitational gas condensation (LGC) method. It was observed from the TEM image that the Bi nanopowder is spherical in shape with a size of nearly 50 nm. The XRD pattern revealed intense peaks which can be indexed as a rhombohedral structure of Bi without any other diffraction peaks corresponding to an oxide or an impurity. This indicates that the resulting nanopowder synthesized by the LGC method is a highly crystallized Bi with a high purity. The square wave anodic stripping voltammograms (SWASV), experimentally measured for the Bi nanopowder electrode, showed well-defined and highly reproducible electrochemical responses relating to the stripping of Cd and Pb. The detection limit of the electrode was estimated to be 0.15 μg/l and 0.07 μg/l for Cd and Zn, respectively, on the basis of the signal-to-noise characteristics (S/N = 3) of the response for the 1.0 μg/l solution under a 10 min accumulation.  相似文献   

8.
L subshell fluorescence yields (ω1, ω2 and ω3) for the elements Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Th and U have been measured at the 123.6 keV γ-ray emission excitation energy from a 57Co annular radioactive source (925 MBq) using a Si(Li) detector. The measured L subshell fluorescence yields were compared with the theoretical and semi-empirical values.  相似文献   

9.
Electrochemical DNA sensor has been fabricated by immobilizing thiolated single stranded oligonucleotide (ssDNA) probe onto gold (Au) coated glass electrode for meningitis detection using hybridization with complementary DNA (CtrA) in presence of methylene blue (MB). These electrodes (ssDNA/Au and dsDNA/Au) have been characterized using atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) technique. The DNA/Au electrode can detect the complementary DNA in the range of 7–42 ng/μl in 5 min (hybridization) with response time 60 s and electrode is stable for about 4 months when stored at 4 °C. The sensitivity of dsDNA/Au electrode is 115.8 μA/ng with 0.917 regression coefficient (R).  相似文献   

10.
The electrochemical oxidation of catechol and hydroquinone was investigated using cyclic and differential pulse voltammetries at nanostructured mesoporous platinum film electrochemically deposited from the hexagonal liquid crystalline template of C16EO8 surfactant. The mesoporous platinum electrode has shown an excellent electrocatalytic activity and reversibility towards the oxidation of catechol and hydroquinone redox isomers in 1.0 M HClO4. The oxidation and reduction peak separation (ΔE) has been decreased from 485 to 55 mV for hydroquinone and from 430 to 75 mV vs. SCE for catechol at polished polycrystalline and mesoporous platinum electrodes, respectively. The differential pulse voltammograms in a mixture solution of catechol and hydroquinone have shown that the oxidation peaks became well resolved and are separated by about 100 mV, although the bare electrode gave a single broad oxidation peak. Moreover, the oxidation current of hydroquinone and catechol has been enhanced by a factor of two and four times, respectively, at mesoporous platinum electrode. Using differential pulse voltammetry, a highly selective and simultaneous determination of hydroquinone and catechol has been explored at mesoporous platinum electrode.  相似文献   

11.
Trace analysis of thallium at surface modified thick-film graphite electrode with Bi nanopowder has been carried out using square-wave anodic stripping voltammetry (SWASV) technique. The Bi nanopowder electrode exhibited a well-defined response relating to the oxidation of Tl. From the linear relationship between Tl concentration and peak current, the sensitivity of the Bi nanopowder electrode was quantitatively estimated. The detection limit of Tl was determined to be 0.03 μg/L for 1.0 μg/L Tl solution under 10 min accumulation, which is lower than the reported values for a Bi film electrode. Furthermore, it is confirmed that EDTA addition effectively eliminates the Pb and Cd interferences in the course of Tl determination by forming complexes with Pb2+ and Cd2+.  相似文献   

12.
A protein-based electrochemical sensor for hydrogen peroxide (H2O2) was developed by an easy and effective film fabrication method where spinach ferredoxin (Fdx) containing [2Fe–2S] metal center was cross linked with 11-mercaptoundecanoic acid (MUA) on a gold (Au) surface. The surface morphology of Fdx molecules on Au electrodes was investigated by atomic force microscopy (AFM). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to study the electrochemical behavior of adsorbed Fdx on Au. The interfacial properties of the modified electrode were evaluated in the presence of Fe(CN)63?/4? redox couple as a probe. From CV, a pair of well-defined and quasi-reversible redox peaks of Fdx was obtained in 10 mM, pH 7.0 Tris–HCl buffer solution at ?170 and ?120 mV respectively. One electron reduction of the [2Fe-2S]2+ cluster occurs at one of the iron atoms to give the reduced [2Fe-2S]+. The formal reduction potential of Fdx ca. ?150 mV (vs. Ag/AgCl electrode) at pH 7.0. The electron-transfer rate constant, ks, for electron transfer between the Au electrode and Fdx was estimated to be 0.12 s?1. From the electrochemical experiments, it is observed that Fdx/MUA/Au promoted direct electron transfer between Fdx and electrode and it catalyzes the reduction of H2O2. The Fdx/MUA/Au electrode displays a linear increase in amperometric current for increasing concentration of H2O2.The sensor calibration plot was linear with r2 = 0.998 with sensitivity approximately 68.24 μAm M?1 cm?2. Further, the effect of nitrite on the developed sensor was examined which does not interfere with the detection of H2O2. Finally, the addition of H2O2 on MUA/Au electrode was observed which has no effect on amperometric current.  相似文献   

13.
The capacitance of the polycrystalline gold electrode–ionic liquid BMIMTf [1-butyl-3- methyl imidazolium trifluoromethanesulfonate (triflate)] interface has been studied using ac voltammetry and electrochemical impedance spectroscopy (EIS). Slow potential scanning reveals a massive hysteresis between potential scans toward negative or positive directions and provides a distorted C(E) curve. Kinetic studies indicate that 10 min wait times are required after each potential step for system relaxation. EIS resolves the overall series capacitance into contributions from ion adsorption and double-layer capacitance, CDL. Isolation of CDL reveals that even 10 min of equilibration time is insufficient to completely remove the hysteresis. The shape of the negative-going CDL(E) curve is camel-shaped whereas the shape of the positive-going curve is bell-shaped.  相似文献   

14.
Multi-walled carbon nanotubes (MWCNTs) were synthesized on platinum plate electrodes by the chemical vapor deposition (CVD) method. The MWCNTs synthesized on the Pt plate (MWCNTs/Pt) electrode were immediately immersed into solutions of glucose oxidase (GOX) to immobilize these enzymes onto the MWCNTs/Pt electrode surfaces. After the GOX was immobilized onto the MWCNTs/Pt electrode, a well-defined catalytic oxidation current was increased from ca. −0.45 V (vs. Ag/AgCl/saturated KCl), which was close to the redox potential of flavin adenine dinucleotide (FAD) as a prosthetic group of GOX under physiological pH values.  相似文献   

15.
Non-ionic surfactant vesicles (NSVs), also referred to as niosomes, have been studied as an alternative to conventional liposomes. In this paper, electrochemical inspection of the interaction between Herring sperm DNA and niosomes has been investigated after a simple and novel method for the formation of niosomes on Au electrode. Each step of electrode modification has been confirmed with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The assembly of octadecanethiol (ODT) layer on the electrode surface generates a packed film that introduces a barrier to the interfacial electron transfer (Ret), and the subsequent immobilization of niosomes onto the self-assembled monolayer (SAM) layer results in a further increase of Ret, due to the formed bilayer almost blocked the redox probe to the electrode surface. When Herring sperm DNA was added, the Ret value decreased, indicating that the barrier of the redox probe to the surface was disrupted. The addition of DNA caused the formation of some transmembrane channels for the redox probe across the niosomes. A good linear relationship between Ret value and DNA concentration was found over the 0–0.05 mg mL−1 concentration range.  相似文献   

16.
Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor(AS) device constructed with β–Ni(OH)_2/MWCNTs as positive electrode and KOH activated honeycomb-like porous carbon(K-PC) derived from banana fibers as negative electrode. Initially,the electrochemical performance of hydrothermally synthesized β–Ni(OH)_2/MWCNTs nanocomposite and K-PC was studied in a three-electrode system using 1 M KOH. These materials exhibited a specific capacitance(Cs) of 1327 F/g and 324 F/g respectively at a scan rate of 10 m V/s. Further, the AS device i.e.,β–Ni(OH)_2/MWCNTs//K-PC in 1 M KOH solution, demonstrated a Cs of 156 F/g at scan rate of 10 m V/s in a broad cell voltage of 0–2.2 V. The device demonstrated a good rate capability by maintaining a Cs of 59 F/g even at high current density(25 A/g). The device also offered high energy density of 63 Wh/kg with maximum power density of 5.2 kW/kg. The AS device exhibited excellent cycle life with 100% capacitance retention at 5000 th cycle at a high current density of 25 A/g. Two AS devices connected in series were employed for powering a pair of LEDs of different colors and also a mini fan.  相似文献   

17.
Activated carbon fibers (ACFs) with high surface area and highly mesoporous structure for electrochemical double layer capacitors (EDLCs) have been prepared from polyacrylonitrile fibers by NaOH activation. Their unique microstructural features enable the ACFs to present outstanding high specific capacitance in aqueous, non-aqueous and novel ionic liquid electrolytes, i.e. 371 F g−1 in 6 mol L−1 KOH, 213 F g−1 in 1 mol L−1 LiClO4/PC and 188 F g−1 in ionic liquid composed of lithium bis(trifluoromethane sulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and 2-oxazolidinone (C3H5NO2, OZO), suggesting that the ACF is a promising electrode material for high performance EDLCs.  相似文献   

18.
This research is aimed to increase the activity of anodic catalysts and thus to lower noble metal loading in anodes for methanol electrooxidation. The Pt–Ni–Pb/C catalysts with different molar compositions were prepared. Their performance were tested by using a glassy carbon disk electrode through cyclic voltammetric curves in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. The performances of Pt–Ni–Pb/C catalyst with optimum composition (the molar ratio of Pt/Ni/Pb is 5:4:1) and Pt/C (E-Tek) were also compared. Their particle sizes and structures were determined by means of X-ray diffraction (XRD). The XRD results show, compared with that of Pt/C, the lattice parameter of Pt–Ni–Pb (5:4:1)/C catalyst decreases, its diffraction peaks are shifted slightly to a higher 2θ values. This indicates the formation of an alloy involving the incorporation of Ni and Pb atoms into the fcc structure of Pt. The electrochemical measurement shows the activity of Pt–Ni–Pb/C catalyst with an atomic ratio of 5:4:1 for methanol electrooxidation is the best among all different compositions. The activity of Pt–Ni–Pb (5:4:1)/C catalyst is much higher than that of Pt/C (E-Tek).  相似文献   

19.
PbO2 thin films were prepared by pulse current technique on Ti substrate from Pb(NO3)2 plating solution. The hybrid supercapacitor was designed with PbO2 thin film as positive electrode and activated carbon (AC) as negative electrode in the 5.3 M H2SO4 solution. Its electrochemical properties were determined by cyclic voltammetry (CV), charge–discharge test and electrochemical impedance spectroscopy (EIS). The results revealed that the PbO2/AC hybrid supercapacitor exhibited large specific capacitance, high-power and stable cycle performance. In the potential range of 0.8–1.8 V, the hybrid supercapacitor can deliver a specific capacitance of 71.5 F g?1 at a discharge current density of 200 mA g?1(4 mA cm?2) when the mass ratio of AC to PbO2 was three, and after 4500 deep cycles, the specific capacitance remains at 64.4 F g?1, or 32.2 Wh Kg?1 in specific energy, and the capacity only fades 10% from its initial value.  相似文献   

20.
We report that highly effective electrode modification can be achieved by sparking process between a flat electrode substrate and a tip counter electrode. The concept is introduced by the development of Bi2O3-modified graphite screen printed electrodes (SPEs). SPEs were sparked with a bismuth wire at 1.2 kV under atmospheric conditions. The effect of polarity on the morphology of the sensing surface, bismuth loading and the sensitivity of the resulting sensors for the simultaneous anodic stripping voltammetric determination of Cd(II) and Pb(II) was investigated. Compared with electroplated and various bismuth precursors bulk-modified SPEs, the developed sparked electrodes exhibited considerably lower limit of detection (0.2 μg L 1, S/N = 3) for each target ion. Therefore, sparking technique offers a facile and green approach for the development of highly sensitive bismuth-based electrodes, and a wide-scope of applicability in the development of metal-modified sensing surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号