首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal facet engineering of semiconductors has become an important strategy for fine-tuning the physicochemical properties and thus optimizing the reactivity and selectivity of photocatalysts. In this review, we present the basic strategies for crystal facet engineering of photocatalysts and describe the recent advances in synthesizing faceted photocatalysts, in particular TiO(2) crystals. The unique properties of faceted photocatalysts are discussed in relation to anisotropic corrosion, interaction dependence of adsorbates, photocatalytic selectivity, photo-reduction and oxidation sites, and photocatalytic reaction order. Ideas for future research on crystal facet engineering for improving the performance of photocatalysts are also proposed.  相似文献   

2.
具有单层二维蜂窝状结构的石墨烯在材料科学和能源转化领域吸引了巨大的研究兴趣.在光催化领域,因其独特的二维平面结构、优异的电荷传输能力、超高的理论比表面积、良好的透光性和化学稳定性,可作为高效的助催化剂,以提高光催化体系的太阳能转换效率.在一些特定的光催化体系中,石墨烯还可以作为大分子光敏剂产生光生电子.近年来,石墨烯基...  相似文献   

3.
Carrier dynamics and surface reaction are two critical processes for determining the performance of photocatalytic reaction. Highly designable polymer-based photocatalysts have shown promising protectives in energetic and environmental applications. In this prospective, we first distinguished the differences of physiochemical properties between polymer-based semiconductors and traditional inorganic semiconductors. Then, the effects of single-atom sites on the charge dynamics and reaction kinetics of polymer-based photocatalysts are further elaborated. Time(excitation)-space(wavefunction) population analysis, which can provide relevant information to clarify the structure-excitation relationships after introducing the single atom sites was also reviewed. In the future, with the further development of artificial intelligence, the establishment of an energy function with a regression accuracy close to or reaching the level of density functional theory is highly desired to infer the energetic diagram of the photocatalytic systems at the excited states. Furthermore, coordination structures, interaction with inorganic semiconductors, photocatalytic stability and solvent effects should also be carefully considered in the future studies of polymer-based photocatalyst.  相似文献   

4.
Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis.  相似文献   

5.
Interest in the application of semiconductors toward the photocatalytic generation of solar fuels, including hydrogen from water-splitting and hydrocarbons from the reduction of carbon dioxide, remains strong due to concerns over the continued emission of greenhouse gases as well as other environmental impacts from the use of fossil fuels. While the efficiency and durability of such systems will depend heavily on the types of the semiconductors, co-catalysts, and mediators employed, the dimensionality of the semiconductors employed can also have a significant impact. Recognizing the broad nature of this field and the many recent advances in it, this review focuses on the emerging approaches from 0-dimensional (0D) to 3-dimensional (3D) semiconductor photocatalysts towards efficient solar fuels generation. We place particular emphasis on systems that are “semi-artificial”, that is, hybrid systems that integrate naturally occurring enzymes or whole cells with semiconductor components that harvest light energy. The semiconductors in these systems must have suitable interfacial properties for immobilization of enzymes to be effective photocatalysts. These requirements are particularly sensitive to surface structures and morphology, making the semiconductor dimensionality a critical factor. In addition to providing an overview of advances towards designing 3D architecture in semi-artificial photosynthetic field, we also present recent advances in fabrication strategies for 3D inorganic photocatalysts.  相似文献   

6.
These days, explorations have focused on designing two-dimensional (2D) nanomaterials with useful (photo)catalytic and environmental applications. Among them, MXene-based composites have garnered great attention owing to their unique optical, mechanical, thermal, chemical, and electronic properties. Various MXene-based photocatalysts have been inventively constructed for a variety of photocatalytic applications ranging from pollutant degradation to hydrogen evolution. They can be applied as co-catalysts in combination with assorted common photocatalysts such as metal sulfide, metal oxides, metal–organic frameworks, graphene, and graphitic carbon nitride to enhance the function of photocatalytic removal of organic/pharmaceutical pollutants, nitrogen fixation, photocatalytic hydrogen evolution, and carbon dioxide conversion, among others. High electrical conductivity, robust photothermal effects, large surface area, hydrophilicity, and abundant surface functional groups of MXenes render them as attractive candidates for photocatalytic removal of pollutants as well as improvement of photocatalytic performance of semiconductor catalysts. Herein, the most recent developments in photocatalytic degradation of organic and pharmaceutical pollutants using MXene-based composites are deliberated, with a focus on important challenges and future perspectives; techniques for fabrication of these photocatalysts are also covered.  相似文献   

7.
半导体/石墨烯复合光催化剂的制备及应用   总被引:1,自引:0,他引:1  
首先分析了石墨烯和半导体光催化剂的特点,以及二者复合后可能具有的优越性质,接着介绍了石墨烯和半导体复合光催化剂的制备方法,归纳了石墨烯增强半导体光催化的机理,然后阐述了复合光催化剂在降解有机污染物、光催化分解水产氢、光催化还原CO2制有机燃料和光催化灭菌四个典型的应用,最后对半导体/石墨烯复合光催化剂未来的发展趋势提出了展望.  相似文献   

8.
Two-dimensional (2-D) BiVO4 nanosheets-graphene (GR) composites with different weight addition ratios of GR have been prepared via a facile wet chemistry process. X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectra (XPS), UV-vis diffuse reflectance spectra (DRS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption, transient photocurrent response and photoluminescence (PL) spectra were employed to determine the properties of the samples. It is found that BiVO4 nanosheets could pave well on the surface of graphene sheets. BiVO4 nanosheets-GR composites with a proper addition amount of GR exhibited higher photocatalytic activity than bare BiVO4 nanosheets toward liquid-phase degradation of rhodamine B (RhB) and methyl orange (MO) under visible light irradiation. The enhancement of photocatalytic activities of BiVO4 nanosheets-GR composites can be attributed to the effective separation of photoexcited electron-hole pairs. This work not only provides a simple strategy for fabricating specific 2-D semiconductor-2-D GR composites, but also opens a new window of such 2-D semiconductor-2-D GR composites as visible light photocatalysts toward an improved visible light photoactivity in purifying polluted water resources.  相似文献   

9.
This Review provides a perspective on porous organic polymer-photocatalyst composites obtained by coupling semiconductors and hydrophilic/hydrophobic polymers which do not modify the properties of the embedded photocatalysts, but can influence the efficiency of the overall catalytic process. Particular attention has been given to polymer composites in the form of monolithic hydrogel/sponge/aerogels obtained by dissolving the polymer in a solvent, which contains the photocatalyst dispersed, inducing gelation or solidification of the solution and subsequently removing the solvent by a drying process. The photocatalytic applications discussed here cover H2 evolution from water splitting, CO2 reduction, and organic synthesis. Indeed, the main aim of this Review is to outline an alternative perspective to the highly studied environmental photocatalytic applications, highlighting the photoactive properties of these composites thanks to the incorporation of semiconductors in the 3D porous structure of organic polymers. Finally the challenges and potential advances associated with the use of porous organic polymer-photocatalyst composites for future scientific research are outlined.  相似文献   

10.
含有机物工业废水的处理仍然是人类实现可持续发展的重大挑战.而光催化作为一种先进的氧化环保技术,以其反应条件温和、能耗相对较低的优点在有机废水处理中受到越来越多的关注.近年来,人们设计和合成了许多不同结构和形状的光催化剂.特别是金属氧化物半导体以其适宜的能带结构、稳定的物化性质、无毒性等特点已成为光催化降解有机废水的研究热点.此外,一维纳米结构(1D)已被证实有利于光催化降解过程,其优势在于比表面积大,离子的迁移路径短,以及独特的一维电子转移轨道.尤其是TiO2纳米纤维由于其亲水性、特殊的形貌和合适的能带位置,在污染物水溶液的处理中表现出优异的光催化性能.然而,TiO2(~3.2 eV)的宽禁带、光生载流子的易复合等缺陷导致其光利用率较低,限制了其实际应用.因此,人们提出了许多提高光催化活性的策略,如掺杂金属或非金属元素、负载贵金属、构建异质结等.构建梯形(S型)异质结已被证实是提高复合材料光催化活性的一种有前途的策略.S型异质结不仅能有效地分离光生电子和空穴,而且还原能力低的半导体CB上的电子和氧化能力低的半导体VB上的空穴复合,而氧化还原能力较强的空穴和电子分别被保留.因此,这一电子转移过程赋予了复合物最大的氧化还原能力.同时,在g-C3N4中引入硫元素可以拓宽其光吸收范围,从而产生更多的光生载流子.此外,额外的表面杂质将有助于e?-h+对的分离,其光催化活性明显高于单纯的g-C3N4.综合一维纳米结构、硫掺杂和S型异质结的优势,本文采用静电纺丝和煅烧法制备了一系列硫掺杂的g-C3N4(SCN)/TiO2 S型光催化剂.制备的SCN/TiO2复合材料在光催化降解刚果红(CR)水溶液中表现出比纯TiO2和SCN更优越的光催化性能.光催化活性的显著增强是由于一维分布的纳米结构和S型异质结.此外,XPS分析和DFT计算表明,电子从SCN通过SCN/TiO2复合材料的界面转移到TiO2.在模拟太阳光照射下,界面内建电场、带边缘弯曲和库仑相互作用协同促进了复合物相对无用的电子和空穴的复合.因此,剩余的电子和空穴具有较高的还原性和氧化性,使复合材料具有最高的氧化还原能力.这些结果通过自由基捕获实验、ESR实验和XPS原位分析得到了充分的验证,说明光催化剂中的电子迁移遵循S型异质结机理.本文不仅可以丰富了新型S型异质结光催化剂的设计和制备方面的知识,并为未来解决环境污染问题提供一个有前景的策略.  相似文献   

11.
We demonstrated a unique synthesis approach of graphene(GR)-wrapped Ag_3PO_4/LaCO_3OH(APO/LCO)heterostructures by an in-situ wet chemical method. FESEM analysis reveals the formation of rhombic dodecahedrons of APO decorated with LCO and later wrapped with GR flakes. Optical studies shows two absorption edges corresponding to the band gap energies of APO(2.41 eV) and LCO(4.1 eV). Considering the absorption edge of the heterostructures in the visible region, the photocatalytic activities of photocatalysts containing different APO/LCO mass ratios were evaluated by the degradation of MB. GR-decorated composite with 20% LCO(APO/LCO20/GR) exhibited the highest photocatalytic activity for MB degradation, with a rate constant, k of 0.541 min~(-1). The photocatalytic activity of APO/LCO20/GR more greatly enhanced than those of the individual constituents(APO, LCO, APO/LCO20). The enhanced photocatalytic activity of the heterostructure can be attributed to the co-catalytic effect of LCO as well as intriguing physicochemical properties of GR. To understand the enhanced photocatalytic activity of the heterostructures the photocatalytic reaction mechanism is proposed in detail. The recyclability of the APO/LCO/GR composite photocatalyst is further evaluated by reusing the catalyst in replicate photocatalytic experiments which shows consistent photocatalytic activity thereby confirms the stability and reusability of heterostructure photocatalyst.  相似文献   

12.
Two-dimensional (2-D) BiVO4 nanosheets-graphene (GR) composites with different weight addition ratios of GR have been prepared via a facile wet chemistry process. X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectra (XPS), UV-vis diffuse reflectance spectra (DRS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption, transient photocurrent response and photoluminescence (PL) spectra were employed to determine the properties of the samples. It is found that BiVO4 nanosheets could pave well on the surface of graphene sheets. BiVO4 nanosheets-GR composites with a proper addition amount of GR exhibited higher photocatalytic activity than bare BiVO4 nanosheets toward liquid-phase degradation of rhodamine B (RhB) and methyl orange (MO) under visible light irradiation. The enhancement of photocatalytic activities of BiVO4 nanosheets-GR composites can be attributed to the effective separation of photoexcited electron-hole pairs. This work not only provides a simple strategy for fabricating specific 2-D semiconductor-2-D GR composites, but also opens a new window of such 2-D semiconductor-2-D GR composites as visible light photocatalysts toward an improved visible light photoactivity in purifying polluted water resources.  相似文献   

13.
张爱平  张进治 《无机化学学报》2009,25(11):2040-2047
采用水热合成法, 制备出Eu、Gd和Er掺杂的BiVO4复合光催化剂,并采用X射线衍射、X射线光电子谱、扫描电子显微镜和紫外-可见漫反射光谱技术对其进行分析表征。通过可见光下降解水溶液中甲基橙分子来考察其光催化性能,结果显示掺杂的复合光催化剂活性都强于纯的BiVO4,对掺杂复合光催化剂的催化活性增强机理进行了讨论和描述。  相似文献   

14.
一维La(OH)3纳米棒具有特殊的电子结构和多功能特性,特别是作为半导体光催化剂引起了人们极大的兴趣.但La(OH)3禁带宽度较大,且只能吸收紫外光,所以光催化效率较低,可见光利用能力较差,限制了La(OH)3的实际应用.因此,需要开发一种高效的改进方法来提高La(OH)3的可见光催化性能.本课题组发展了一种有效的改进La(OH)3方法,通过简易的方法将BiOI纳米颗粒沉积在La(OH)3纳米棒上,有效增强了对可见光的吸收能力和光生载流子的分离能力.本文采用X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、紫外-可见漫反射光谱(UV-Vis DRS)、荧光光谱(PL)、光电子能谱(XPS)、电子自旋共振(ESR)、N2吸附和元素分析等手段研究了BiOI@La(OH)3纳米棒异质结的构建原理及增强可见光催化性能的原因.XRD和XPS结果表明,通过简易化学沉积法原位构建了BiOI@La(OH)3异质结,并且在异质结中没有杂相生成.由SEM图像可见,原始La(OH)3由分散的一维纳米棒组成,平均直径为30–50 nm.通过BiOI与La(OH)3表面的紧密接触成功构建异质结,但BiOI纳米颗粒未改变La(OH)3纳米棒的形貌.由TEM和HRTEM图像可见,La(OH)3纳米棒的平均长度为30–50 nm,并且在BiOI@La(OH)3异质结中可以清晰看出BiOI和La(OH)3之间紧密接触的界面和晶格间距.N2物理吸附结果显示,随着BiOI量的增加,BiOI@La(OH)3异质结的比表面积增加,但孔体积未现明显变化.UV-Vis DRS结果显示,引入BiOI后明显促进了La(OH)3对可见光的吸收能力和利用效率,从而有利于增强可见光催化活性.通过理论计算分别得到BiOI和La(OH)3的价带和导带位置,表明具有非常匹配的能带结构可以促进BiOI光生电子的有效转移.可见光催化去除NO测试结果表明,BiOI@La(OH)3异质结的光催化活性高达50.5%,明显优于BiOI和La(OH)3.ESR测试结果显示,BiOI@La(OH)3异质结可见光催化活性中起主要作用的活性物种是?OH.结合表征结果,BiOI@La(OH)3纳米棒异质结可见光催化性能增强的原因主要有三个:(1)BiOI@La(OH)3异质结增大的比表面积有利于反应物和产物在催化剂表面扩散,同时可提供更多活性位点参与光催化反应;(2)禁带宽度影响光催化效率,当BiOI与La(OH)3达到合适比例时,既可以促进可见光吸收,也可以使光生电子具有较强还原能力;(3)BiOI@La(OH)3异质结有利于光生载流子的分离,从而显著提高其光催化活性.  相似文献   

15.
Covalent organic frameworks(COFs) are emerging photocatalysts for hydrogen evolution in water splitting in recent years. They offer a pre-designable platform to design tailor-made structures and chemically adjustable functionality in terms of photocatalysis. In this review, we summarize the recent striking progress of COF-based photocatalysts in design and synthesis. Firstly, different approaches to functionalizing building blocks, diversifying linkages, extending π-conjugation and establishing D-A conjugation are illustrated for enhancing photocatalytic activity. Next, post-modification of backbones and pores is detailed for emphasizing the synergistic catalytic uniqueness of COFs. Besides, the strategy of preparing COF-related composites with various semiconductors is outlined for optimizing the electronic properties. Finally, we conclude with the current challenges and promising opportunities for the exploration of new COF-based photocatalysts.  相似文献   

16.
蓝奔月  史海峰 《物理化学学报》2014,30(12):2177-2196
传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题.利用太阳光和光催化材料将CO2还原为碳氢燃料,不仅可以减少空气中CO2浓度,降低温室效应的影响,还可以提供碳氢燃料,缓解能源短缺问题,因此日益受到各国科学家的高度关注.本文综述了光催化还原CO2为碳氢燃料的研究进展,介绍了光催化还原CO2的反应机理,并对现阶段报道的光催化还原CO2材料体系进行了整理和分类,包括TiO2光催化材料,ABO3型钙钛矿光催化材料,尖晶石型光催化材料,掺杂型光催化材料,复合光催化材料,V、W、Ge、Ga基光催化材料及石墨烯基光催化材料.评述了各种材料体系的特点及光催化性能的一些影响因素.最后对光催化还原CO2的研究前景进行了展望.  相似文献   

17.
The design of charge separation sites under illumination in semiconductors is a standing challenge for their utilization as photo(electro)catalysts. Here, the synthesis of modified carbon nitride materials (CNs) with donor–acceptor (D–A) domains, with altering electronic structure, is reported. To do so, new monomers based on polycyclic aromatic hydrocarbons (PAH)-substituted 1,3,5-triazine were designed, which were then embedded within cyanuric acid–melamine supramolecular assemblies to form CN precursors. The conjugation degree of PAHs was systematically changed, from single benzene ring up to pyrene unit, elucidating the role of the conjugation degree on the morphology, structure and electronic properties as well as photo(electro)catalytic activity. The careful design of the D–A sites results in excellent photocatalytic activity as well as long-term stability for the hydrogen evolution reaction. Moreover, PAH–CNs films exhibit enhanced charge separation, optical absorption, electrochemical surface area and electronic conductivity, leading to an outstanding photoelectrochemical (PEC) activity compared to pristine CN.  相似文献   

18.
The photocatalytic reduction of CO2 has attracted considerable attention owing to the dual suppression of environmental pollution and energy shortage. The technology uses solar energy to convert carbon dioxide into hydrocarbon fuel, which is of great significance for achieving the carbon cycle. The development of low-cost photocatalytic materials is critical to achieving efficient solar energy to fuels conversion. One of the most commonly employed photocatalysts is TiO2. However, it suffers from broad band gap as well as the recombination of photo-excited holes and electron. Hence, in this work, we report the photochemical reduction of CO2 using rod-like PCN-222(Cu)/TiO2 composites as photocatalyst through a simple hydrothermal method, in which TiO2 nanoparticles are anchored at the interface of the SiC rod PCN-222(Cu). Multiple characterization techniques were used to analyze the structure, morphology, and properties of the PCN-222(Cu)/TiO2 composite. A series of characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy, photo-electrochemical, and photoluminescence (PL) confirm the successful preparation of PCN-222(Cu)/TiO2 composites. SEM reveals that the TiO2 nanoparticles are uniformly distributed on the surface of the rod-shaped PCN-222(Cu)/TiO2. XRD results show that PCN-222(Cu) and PCN-222(Cu)/TiO2 composite photocatalysts with good crystal structure were successfully synthesized. According to the DRS results, the prepared PCN-222(Cu)/TiO2 composite samples exhibit characteristic absorption peaks of metalloporphyrins in the visible region. PL spectroscopy, transient photocurrent response, and electrochemical impedance spectroscopy further confirm that the rod-like PCN-222(Cu)/TiO2 samples have high electron-hole pair separation efficiency. By controlling the mass ratio of PCN-222(Cu) and TiO2, the photocatalytic CO2 reduction performance test shows that the 10% PCN-222(Cu)/TiO2 composite achieves optimal catalytic performance, yielding 13.24 μmol·g−1·h−1 CO and 1.73 μmol·g−1·h−1 CH4, respectively. All the rod-like PCN-222(Cu)/TiO2 composites exhibit better photocatalytic CO2 activity than that of TiO2 nanoparticles or PCN-222(Cu) under the illumination of xenon lamps, which is attributed to charge transport and electron-hole separation capabilities. After three test cycles, the catalytic activity of PCN-222(Cu)/TiO2 photocatalyst was virtually unchanged. The reduction yield of the catalyst increased for 8 h under continuous illumination, indicating that PCN-222(Cu)/TiO2 composites have acceptable stability. The estimation of the band gap curve and the Mote-Schottky curve test show that the lowest unoccupied molecular orbital position of PCN-222(Cu) is more negative than the TiO2 of the conduction band; hence, a possible photocatalytic reaction mechanism of the PCN-222(Cu)/TiO2 composite is proposed. This study provides a new strategy for the integration of metal-organic frameworks and oxide semiconductors to construct efficient photocatalytic systems.  相似文献   

19.
Optimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron-donating or withdrawing groups in the pores. Intramolecular donor-acceptor (D-A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro-functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high-activity COF photocatalysts with intramolecular D-A structures not easily accessible using traditional synthetic approaches.  相似文献   

20.
近红外光能量占太阳能的44%,但是传统半导体光催化剂难以利用近红外光,因此制备近红外光催化剂是近几年来的研究热点。本文阐述了镧系离子掺杂的近红外光催化剂催化的基本原理,综述了镧系离子掺杂上转换纳米材料/半导体复合近红外光催化剂的合成方法及特点,重点介绍了外延生长法,静电纺丝法与化学组装法。并对这些近红外光催化材料在光降解污染物和光解水领域的应用进行了总结并对其应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号