首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the free vibration of protein microtubules (MTs) embedded in the cytoplasm by using linear and nonlinear Euler–Bernoulli beam model based on modified strain gradient theory. The protein microtubule is modeled as a simply support or clamped–clamped beam. Beside, the elastic medium surrounding of MTs is modeled with Pasternak foundation. Vibration equations are obtained by using Hamilton principle and these equations are solved according to boundary conditions. Finally the dependency of vibration frequencies on environmental conditions, MTs size, changes of temperature and material length scale parameters (size effects) is studied. By comparing the findings, it could be said that the MTs' frequency is greatly increased in the presence of cytoplasm and it is very dependent to material length scale parameters.  相似文献   

2.
The free vibration analysis of a carbon nanotube (CNT) embedded in a volume element is performed using 3D finite element (FE) and analytical models. Three approaches consist of molecular and continuum mechanics FE methods and continuum analytical method are employed to simulate the CNT, interphase region and surrounding matrix. The bonding between CNT and polymer is treated as non-perfect bonding using van der Waals and triple phase material interaction in first and second approaches. In analytical approach a perfect bonding is assumed between nanotube and matrix. First, natural frequencies of CNT under different boundary conditions and aspect ratios are obtained by three approaches and the results are compared with published data. The results show the frequency response variations of CNT in GHz to THz range. Subsequently, vibration behaviors of CNT/polymer are evaluated and the results revealed the importance of interphase region role in the performance of nanocomposites. The results also showed the convergence of the natural frequencies for 1–2.5% of CNT volume in high aspect ratios using three methods, so that the interphase effects is negligible. In addition, it is observed that the molecular method due to interphase role has proper performance in vibration behavior investigation of volume elements.  相似文献   

3.
In this paper, the nonlinear forced vibration behavior of composite plates reinforced by carbon nanotubes is investigated by a numerical approach. The reinforcement is considered to be functionally graded (FG) in the thickness direction according to a micromechanical model. The first-order shear deformation theory and von Kármán-type kinematic relations are employed. The governing equations and the corresponding boundary conditions are derived with the use of Hamilton's principle. The generalized differential quadrature (GDQ) method is utilized to achieve a discretized set of nonlinear governing equations. A Galerkin-based scheme is then applied to obtain a time-varying set of ordinary differential equations of Duffing-type. Subsequently, a time periodic discretization is done and the frequency response of plates is determined via the pseudo-arc length continuation method. Selected numerical results are given for the effects of different parameters on the nonlinear forced vibration characteristics of uniformly distributed carbon nanotube- and FG carbon nanotube-reinforced composite plates. It is found that with the increase of CNT volume fraction, the flexural stiffness of plate increases; and hence its natural frequency gets larger. Moreover, it is observed that the distribution type of CNTs significantly affects the vibrational behavior of plate. The results also show that when the mid-plane of plate is CNT-rich, the natural frequency takes its minimum value and the hardening-type response of plate is intensified.  相似文献   

4.
We derive the Ginzburg–Landau equations for superconductors in static magnetic fields. Instead of the square of the gauge‐invariant gradient of the order‐parameter wave function, we consider the quantum‐mechanical expression for the kinetic energy in the Ginzburg–Landau energy functional. We introduce a new surface term in the free energy functional which results in the de Gennes interface conditions. The phenomenological Ginzburg–Landau theory thus contains three length scales which must be determined from microscopic theory: the Ginzburg–Landau coherence length, the London penetration depth, and the de Gennes length.  相似文献   

5.
This paper presents a nonlinear free vibration analysis of the microbeams based on the modified couple stress Euler–Bernoulli beam theory and von Kármán geometrically nonlinear theory. The governing differential equations are established in variational form from Hamilton principle, with a material length scale parameter to interpret the size effect. These partial differential equations are reduced to corresponding ordinary ones by eliminating the time variable with the Kantorovich method following an assumed harmonic time mode. The resulting equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved numerically by shooting method, and the size-dependent characteristic relations of nonlinear vibration frequency vs. central amplitude of the microbeams are obtained successfully. The comparisons with available published results show that the current approach and algorithm are of good practicability. A parametric study is conducted involving the dependency of the frequency on the length scale parameter along with Poisson ratio, which shows that the nonlinear vibration frequency predicted by the current model is higher than that by the classical one.  相似文献   

6.
The nonlinear free vibration of carbon nanotubes/fiber/polymer composite (CNTFPC) multi-scale plates with surface-bonded piezoelectric actuators is studied in this paper. The governing equations of the piezoelectric nanotubes/fiber/polymer multiscale laminated composite plates are derived based on first-order shear deformation plate theory (FSDT) and von Kármán geometrical nonlinearity. Halpin–Tsai equations and fiber micromechanics are used in hierarchy to predict the bulk material properties of the multiscale composite. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. A perturbation scheme of multiple time scales is employed to determine the nonlinear vibration response and the nonlinear natural frequencies of the plates with immovable simply supported boundary conditions. The effects of the applied constant voltage, plate geometry, volume fraction of fibers and weight percentage of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) on the linear and nonlinear natural frequencies of the piezoelectric nanotubes/fiber/polymer multiscale composite plate are investigated through a detailed parametric study.  相似文献   

7.
Nonlinear free vibration analysis of curved double-walled carbon nanotubes (DWNTs) embedded in an elastic medium is studied in this study. Nonlinearities considered are due to large deflection of carbon nanotubes (geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner and outer tubes. The differential quadrature method (DQM) is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of algebraic equations of motion. The effect of nonlinearities, different end conditions, initial curvature, and stiffness of the surrounding elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTs is studied. Results show that it is possible to detect different vibration modes occurring at a single vibration frequency when CNTs vibrate in the out-of-phase vibration mode. Moreover, it is observed that boundary conditions have significant effect on the nonlinear natural frequencies of the DWCNT including multiple solutions.  相似文献   

8.
In this paper transverse vibration of an axially moving viscoelastic string with a viscous damper at one end is investigated analytically. The string is assumed to be travelling with constant velocity and the length of string is constant or time varying. The linear and nonlinear mathematical models are derived using the Lagrangian function and implemented using a finite element method. The method considers a time varying state space function applied to the linear model, the Newmark-Beta method is used to solve the response for the nonlinear problem numerically. The case of energy dissipated by a viscoelastic damper at one end of the string for different axial string velocities is considered. When a disturbance arrives at the boundary an exact value for the damper which provides maximum energy dissipation is investigated. Finally, numerical simulations are presented to establish the feasibility of the method.  相似文献   

9.
In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are supported by the most general torsional boundary conditions. The transverse displacement components are expressed so as to be valid for large twisting rotations (finite displacement-small strain theory), thus the arising governing differential equations and boundary conditions are in general nonlinear. The resulting coupling effect between twisting and axial displacement components is considered and torsional vibration analysis is performed in both the torsional pre- or post-buckled state. A distributed mass model system is employed, taking into account the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an “average” axial displacement of the cross-section of the bar. The numerical solution of the aforementioned initial boundary value problem is performed using the analog equation method, a BEM based method, leading to a system of nonlinear differential-algebraic equations (DAE), which is solved using an efficient time discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with respect to the fundamental mode shape at the points of reversal of motion after ignoring the axial inertia to verify the accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT), with a geometrically linear fundamental mode shape as a starting vector. The validity of negligible axial inertia assumption is examined for the problem at hand.  相似文献   

10.
Free vibration and buckling of pre-twisted beams exhibit interesting coupling phenomena between compression, moments and torque and have been the subject of extensive research due to their importance as models of wind turbines and helicopter rotor blades. The paper investigates the influence of multiple kinds of initial stresses due to compression, shears, moments and torque on the natural vibration of pre-twisted straight beam based on the Timoshenko theory. The derivation begins with the three-dimensional Green strain tensor. The nonlinear part of the strain tensor is expressed as a product of displacement gradient to derive the strain energy due to initial stresses. The Frenet formulae in differential geometry are employed to treat the pre-twist. The strain energy due to elasticity and the linear kinetic energy are obtained in classical sense. From the variational principle, the governing equations and the associated natural boundary conditions are derived. It is noted that the first mode increases together with the pre-twisted angle but the second decreases seeming to close the first two modes together for natural frequencies and compressions. The gaps close monotonically as the angle of twist increases for natural frequencies and buckling compressions. However, unlike natural frequencies and compressions, the closeness is not monotonic for buckling shears, moments and torques.  相似文献   

11.
The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell’s relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.  相似文献   

12.
Li-Ping Wang 《中国物理 B》2021,30(6):68203-068203
Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory (CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius, nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively. The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely.  相似文献   

13.
The dynamic analysis of a three-layered symmetric sandwich beam with magnetorheological elastomer (MRE) embedded viscoelastic core and conductive skins subjected to a periodic axial load have been carried out under various boundary conditions. As the skins of the sandwich beam are conductive, magnetic loads are applied to the skins during vibration. Due to the field-dependent shear modulus of MRE material, the stiffness of the MRE embedded sandwich beam can be changed by the application of magnetic fields. Using extended Hamilton’s principle along with generalized Galarkin’s method the governing equation of motion has been derived. The free vibration analysis of the system has been carried out and the results are compared with the published experimental and analytical results which are found to be in good agreement. The parametric instability regions of the sandwich beam have been determined for various boundary conditions. Here, recently developed magnetorheological elastomer based on natural rubber containing iron particles and carbon blacks have been used. The effects of magnetic field, length of MRE patch, core thickness, percentage of iron particles and carbon blacks on the regions of parametric instability for first three modes of vibration have been studied. These results have been compared with the parametric instability regions of the sandwich beam with fully viscoelastic core to show the passive and active vibration reduction of these structures using MRE and magnetic field. Also, the results are compared with those obtained using higher order theory.  相似文献   

14.
A nonlocal continuum-based model is derived to simulate the dynamic behavior of bridged carbon nanotube-based nano-scale mass detectors. The carbon nanotube (CNT) is modeled as an elastic Euler-Bernoulli beam considering von-Kármán type geometric nonlinearity. In order to achieve better accuracy in characterization of the CNTs, the geometrical properties of an attached nano-scale particle are introduced into the model by its moment of inertia with respect to the central axis of the beam. The inter-atomic long-range interactions within the structure of the CNT are incorporated into the model using Eringen's nonlocal elastic field theory. In this model, the mass can be deposited along an arbitrary length of the CNT. After deriving the full nonlinear equations of motion, the natural frequencies and corresponding mode shapes are extracted based on a linear eigenvalue problem analysis. The results show that the geometry of the attached particle has a significant impact on the dynamic behavior of the CNT-based mechanical resonator, especially, for those with small aspect ratios. The developed model and analysis are beneficial for nano-scale mass identification when a CNT-based mechanical resonator is utilized as a small-scale bio-mass sensor and the deposited particles are those, such as proteins, enzymes, cancer cells, DNA and other nano-scale biological objects with different and complex shapes.  相似文献   

15.
In formulating mathematical models for dynamical systems, obtaining a high degree of qualitative correctness (i.e. predictive capability) may not be the only objective. The model must be useful for its intended application, and models of reduced complexity are attractive in many cases where time-consuming numerical procedures are required. This paper discusses the derivation of discrete low-dimensional models for the nonlinear vibration analysis of thin cylindrical shells. In order to understand the peculiarities inherent to this class of structural problems, the nonlinear vibrations and dynamic stability of a circular cylindrical shell subjected to static and dynamic loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly nonlinear behavior under both static and dynamic loads. Geometric nonlinearities due to finite-amplitude shell motions are considered by using Donnell's nonlinear shallow-shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the nonlinear vibration modes and the discretized equations of motion are obtained by the Galerkin method using modal expansions for the displacements that satisfy all the relevant boundary and symmetry conditions. Next, the model is analyzed via the Karhunen-Loève expansion to investigate the relative importance of each mode obtained by the perturbation solution on the nonlinear response and total energy of the system. The responses of several low-dimensional models are compared. It is shown that rather low-dimensional but properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

16.
A nonlinear finite element model is provided to predict the static aero-thermal deflection and the vibration behavior of geometrically imperfect shape memory alloy hybrid composite panels under the combined effect of thermal and aerodynamic loads. The nonlinear governing equations are obtained using Marguerre curved plate theory and the principle of virtual work taking into account the temperature-dependence of material properties. The effect of large deflection is included in the formulation through the von Karman nonlinear strain-displacement relations. The thermal load is assumed to be a steady-state constant-temperature distribution, whereas the aerodynamic pressure is modeled using the quasi-steady first-order piston theory. The Newton-Raphson iteration method is employed to obtain the nonlinear aero-thermal deflections, while an eigenvalue problem is solved at each temperature step and static aerodynamic load to predict the free vibration frequencies about the deflected equilibrium position. Finally, the nonlinear deflection and free vibration characteristics of a composite panel are presented, illustrating the effects of geometric imperfection, temperature rise, aerodynamic pressure, boundary conditions and shape memory alloy fiber embeddings on the panel response.  相似文献   

17.
The present paper investigates the convergence of the Galerkin method for the dynamic response of an elastic beam resting on a nonlinear foundation with viscous damping subjected to a moving concentrated load. It also studies the effect of different boundary conditions and span length on the convergence and dynamic response. A train–track or vehicle–pavement system is modeled as a force moving along a finite length Euler–Bernoulli beam on a nonlinear foundation. Nonlinear foundation is assumed to be cubic. The Galerkin method is utilized in order to discretize the nonlinear partial differential governing equation of the forced vibration. The dynamic response of the beam is obtained via the fourth-order Runge–Kutta method. Three types of the conventional boundary conditions are investigated. The railway tracks on stiff soil foundation running the train and the asphalt pavement on soft soil foundation moving the vehicle are treated as examples. The dependence of the convergence of the Galerkin method on boundary conditions, span length and other system parameters are studied.  相似文献   

18.
An efficient method to predict vibration amplitudes at the resonant frequencies of dynamical systems with piecewise-linear nonlinearity is developed. This technique is referred to as bilinear amplitude approximation (BAA). BAA constructs a single vibration cycle at each resonant frequency to approximate the periodic steady-state response of the system. It is postulated that the steady-state response is piece-wise linear and can be approximated by analyzing the response over two time intervals during which the system behaves linearly. Overall the dynamics is nonlinear, but the system is in a distinct linear state during each of the two time intervals. Thus, the approximated vibration cycle is constructed using linear analyses. The equation of motion for analyzing the vibration of each state is projected along the overlapping space spanned by the linear mode shapes active in each of the states. This overlapping space is where the vibratory energy is transferred from one state to the other when the system switches from one state to the other. The overlapping space can be obtained using singular value decomposition. The space where the energy is transferred is used together with transition conditions of displacement and velocity compatibility to construct a single vibration cycle and to compute the amplitude of the dynamics. Since the BAA method does not require numerical integration of nonlinear models, computational costs are very low. In this paper, the BAA method is first applied to a single-degree-of-freedom system. Then, a three-degree-of-freedom system is introduced to demonstrate a more general application of BAA. Finally, the BAA method is applied to a full bladed disk with a crack. Results comparing numerical solutions from full-order nonlinear analysis and results obtained using BAA are presented for all systems.  相似文献   

19.
We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated.  相似文献   

20.
A new elastic nonlocal stress model and analytical solutions are developed for torsional dynamic behaviors of circular nanorods/nanotubes. Unlike the previous approaches which directly substitute the nonlocal stress into the equations of motion, this new model begins with the derivation of strain energy using the nonlocal stress and by considering the nonlinear history of straining. The variational principle is applied to derive an infinite-order differential nonlocal equation of motion and the corresponding higher-order boundary conditions which contain a nonlocal nanoscale parameter. Subsequently, free torsional vibration of nanorods/nanotubes and axially moving nanorods/nanotubes are investigated in detail. Unlike the previous conclusions of reduced vibration frequency, the solutions indicate that natural frequency for free torsional vibration increases with increasing nonlocal nanoscale. Furthermore, the critical speed for torsional vibration of axially moving nanorods/nanotubes is derived and it is concluded that this critical speed is significantly influenced by the nonlocal nanoscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号