首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In this paper, we study the global dynamics of a viral infection model with a latent period. The model has a nonlinear function which denotes the incidence rate of the virus infection in vivo. The basic reproduction number of the virus is identified and it is shown that the uninfected equilibrium is globally asymptotically stable if the basic reproduction number is equal to or less than unity. Moreover, the virus and infected cells eventually persist and there exists a unique infected equilibrium which is globally asymptotically stable if the basic reproduction number is greater than unity. The basic reproduction number determines the equilibrium that is globally asymptotically stable, even if there is a time delay in the infection.  相似文献   

2.
In this paper, we propose a spatial heterogeneous viral infection model, where heterogeneous parameters, the intracellular delay and nonlocal diffusion of free virions are considered. The global well-posedness, compactness and asymptotic smoothness of the semiflow generated by the system are established. It is shown that the principal eigenvalue problem of a perturbation of the nonlocal diffusion operator has a principal eigenvalue associated with a positive eigenfunction. The principal eigenvalue plays the same role as the basic reproduction number being defined as the spectral radius of the next generation operator. The existence of the unique chronic-infection steady state is established by the super-sub solution method. Furthermore, the uniform persistence of the model is investigated by using the persistence theory of infinite dimensional dynamical systems. By setting the eigenfunction as the integral kernel of Lyapunov functionals, the global threshold dynamics of the system is established. More precisely, the infection-free steady state is globally asymptotically stable if the basic reproduction number is less than one; while the chronic-infection steady state is globally asymptotically stable if the basic reproduction number is larger than one. Numerical simulations are carried out to illustrate the effects of intracellular delay and diffusion rate on the final concentrations of infected cells and free virions, respectively.  相似文献   

3.
4.
Hepatitis B virus (HBV) infection is an important health problem worldwide. In this paper, we introduce an improved HBV model with standard incidence function and cytokine-mediated ‘cure’ based on empirical evidences. By carrying out a global analysis of the modified model and studying the stability of the equilibria, we show that infection-free equilibrium is globally asymptotically stable if the basic reproduction number of virus is less than one and, conversely, the infection equilibrium is globally asymptotically stable if the basic reproduction number of virus is greater than one. The study and information derived from this model and other related models may have an important impact on preventing mortality due to hepatitis B virus in the future.  相似文献   

5.
In this paper, the global properties of a class of human immunodeficiency virus (HIV) models with Beddington–DeAngelis functional response are investigated. Lyapunov functions are constructed to establish the global asymptotic stability of the uninfected and infected steady states of three HIV infection models. The first model considers the interaction process of the HIV and the CD4 + T cells and takes into account the latently and actively infected cells. The second model describes two co‐circulation populations of target cells, representing CD4 + T cells and macrophages. The third model is a two‐target‐cell model taking into account the latently and actively infected cells. We have proven that if the basic reproduction number R0 is less than unity, then the uninfected steady state is globally asymptotically stable, and if R0 > 1, then the infected steady state is globally asymptotically stable. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the global stability of a viral infection model with lytic immune response. If the basic reproductive ratio of the virus is less than or equal to one, by the LaSalle's invariance principle, the disease-free steady state is globally asymptotically stable. If the basic reproductive ratio of the virus is greater than one but less than or equal to a constant, which is defined by the parameters of the model, then the immune-exhausted steady state is globally asymptotically stable. The endemic steady state is globally asymptotically stable if the inverse is valid.  相似文献   

7.
This paper investigates the global stability of virus dynamics model with Beddington–DeAngelis infection rate. By constructing Lyapunov functions, the global properties have been analysed. If the basic reproductive ratio of the virus is less than or equal to one, the uninfected steady state is globally asymptotically stable. If the basic reproductive ratio of the virus is more than one, the infected steady state is globally asymptotically stable. The conditions imply that the steady states are always globally asymptotically stable for Holling type II functional response or for a saturation response.  相似文献   

8.
In this article we study the dynamical behaviour of a intracellular delayed viral infection with immune impairment model and general non-linear incidence rate. Several techniques, including a non-linear stability analysis by means of the Lyapunov theory and sensitivity analysis, have been used to reveal features of the model dynamics. The classical threshold for the basic reproductive number is obtained: if the basic reproductive number of the virus is less than one, the infection-free equilibrium is globally asymptotically stable and the infected equilibrium is globally asymptotically stable if the basic reproductive number is higher than one.  相似文献   

9.
In this paper, an HIV-1 infection model with a saturation infection rate and an intracellular delay accounting for the time between viral entry into a target cell and the production of new virus particles is investigated. By analyzing the characteristic equations, the local stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is established. By using suitable Lyapunov functionals and the LaSalle invariant principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable; if the basic reproduction ratio is greater than unity, the chronic-infection equilibrium is globally asymptotically stable.  相似文献   

10.
In this paper, incorporating the delay of viral cytopathicity within target cells, we first presented a basic model of viral infection with delay, and then extended it into a model with two delays and two types of target cells. For the models proposed here, both their basic reproduction numbers are found. By constructing Lyapunov functionals, necessary and sufficient conditions ensuring the global stability of the models with delays are given. The obtained results show that, when the basic reproduction number is not greater than one, the infection-free equilibrium is globally stable in the feasible region, which implies that the virus infection goes extinct eventually; when it is greater than one, the infection equilibrium is globally stable in the feasible region, which implies that the virus infection persists in the body of host.  相似文献   

11.
For a multigroup SEIR epidemiological model with nonlinear incidence rates, the basic reproduction number is identified. It is shown that, under certain group mixing patterns and nonlinearity and/or nonsmoothness in the incidence of infection, the basic reproduction number is a global threshold parameter in the sense that the disease free equilibrium is globally stable if the basic reproduction number is less than one and the endemic equilibrium is globally stable if the basic reproduction number is greater than one.  相似文献   

12.
In this paper, we derive and analyze a nonlocal and time-delayed reaction-diffusion epidemic model with vaccination strategy in a heterogeneous habitat. First, we study the well-posedness of the solutions and prove the ex- istence of a global attractor for the model by applying some existing abstract results in dynamical systems theory. Then we show the global threshold dynamics which predicts whether the disease will die out or persist in terms of the basic reproduction number R 0 defined by the spectral radius of the next generation operator. Finally, we present the influences of heterogeneous spatial infections, diffusion coefficients and vaccination rate on the spread of the disease by numerical simulations.  相似文献   

13.
利用Lyapunov函数研究了带有免疫反应的病毒动力学模型的全局稳定性.当基本再生数R0≤1时.病毒在体内清除;当R0>1时,病毒在体内持续生存.并且模型的正解当免疫再生数R1≤1时,趋于无免疫平衡点,当R1>1.趋于地方病平衡点.  相似文献   

14.
讨论了带有脉冲免疫和传染年龄的传染病模型.传染类的恢复率是传染年龄的函数,当染病再生数小于1时,文章得到无病周期解是全局吸引的.如果总人口规模变化,也可得到类似的结论.最后,提出了带有脉冲免疫和传染年龄传染病模型待解决的问题.  相似文献   

15.
In this paper, we introduce a basic reproduction number for a multigroup SEIR model with nonlinear incidence of infection and nonlinear removal functions between compartments. Then, we establish that global dynamics are completely determined by the basic reproduction number R0. It shows that, the basic reproduction number R0 is a global threshold parameter in the sense that if it is less than or equal to one, the disease free equilibrium is globally stable and the disease dies out; whereas if it is larger than one, there is a unique endemic equilibrium which is globally stable and thus the disease persists in the population. Finally, two numerical examples are also included to illustrate the effectiveness of the proposed result.  相似文献   

16.
This paper is concerned with the global dynamics of a reaction and diffusion model for an HTLV-I infection with mitotic division of actively infected cells and CTL immune response. The well posedness of the proposed model is investigated. In the case of a bounded spatial domain, we establish the threshold dynamics in terms of the basic reproduction number $\mathcal{R}_0$ for the spatially heterogeneous model. Also, by means of different Lyapunov functions, the global asymptotic properties of the steady states for the spatially homogeneous model are studied. In the case of an unbounded spatial domain, there are no travelling wave solutions connecting the infection-free steady state with itself when $\mathcal{R}_0 < 1$. Finally, numerical simulations and conclusions are given.  相似文献   

17.
Autonomous and nonautonomous hepatitis B virus infection models in patchy environment are investigated respectively to illustrate the influences of population migration and almost periodicity for infection rate on the spread of hepatitis B virus. The basic reproduction number is determined and asymptotic stabilities of disease-free and endemic equilibria are established in case of autonomous system. Moreover, in the nonautonomous system case, existence and global attractivity of almost periodic solution for this system are studied. Finally, feasibility of main theoretical results is showed with the aid of numerical examples for model with two patches.  相似文献   

18.
Control of epidemic infections is a very urgent issue today. To develop an appropriate strategy for vaccinations and effectively prevent the disease from arising and spreading, we proposed a modified Susceptible‐Infected‐Removed model with impulsive vaccinations. For the model without vaccinations, we proved global stability of one of the steady states depending on the basic reproduction number R0. As typically in the epidemic models, the threshold value of R0 is 1. If R0 is greater than 1, then the positive steady state called endemic equilibrium exists and is globally stable, whereas for smaller values of R0, it does not exist, and the semi‐trivial steady state called disease‐free equilibrium is globally stable. Using impulsive differential equation comparison theorem, we derived sufficient conditions under which the infectious disease described by the considered model disappears ultimately. The analytical results are illustrated by numerical simulations for Hepatitis B virus infection that confirm the theoretical possibility of the infection elimination because of the proper vaccinations policy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A mathematical model to understand the dynamics of malaria–visceral leishmaniasis co‐infection is proposed and analyzed. Results show that both diseases can be eliminated if R0, the basic reproduction number of the co‐infection, is less than unity, and the system undergoes a backward bifurcation where an endemic equilibrium co‐exists with the disease‐free equilibrium when one of Rm or Rl, the basic reproduction numbers of malaria‐only and visceral leishmaniasis‐only, is precisely less than unity. Results also show that in the case of maximum protection against visceral leishmaniasis (VL), the disease‐free equilibrium is globally asymptotically stable if malaria patients are protected from VL infection; similarly, in the case of maximum protection against malaria, the disease‐free equilibrium is globally asymptotically stable if VL and post‐kala‐azar dermal leishmaniasis patients and the recovered humans after VL are protected from malaria infection. Numerical results show that if Rm and Rl are greater than unity, then we have co‐existence of both disease at an endemic equilibrium, and malaria incidence is higher than visceral leishmaniasis incidence at steady state. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A differential equation model of HIV infection of CD4+T-cells with cure rate is studied. We prove that if the basic reproduction number R0<1, the HIV infection is cleared from the T-cell population and the disease dies out; if R0>1, the HIV infection persists in the host. We find that the chronic disease steady state is globally asymptotically stable if R0>1. Furthermore, we also obtain the conditions for which the system exists an orbitally asymptotically stable periodic solution. Numerical simulations are presented to illustrate the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号