首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

We perform one-dimensional numerical simulations of small-amplitude acoustic pulses in space- and time-dependent random mass density and time-dependent velocity fields. Numerical results reveal that: (a) random fields affect the speeds, amplitudes and, consequently, shapes of sound pulses; (b) for weak random fields and short propagation times the numerical data converge with the analytical results of the mean field theory which says that a space-dependent (time-dependent) random field leads to wave attenuation (amplification) and all random fields speed up sound pulses; (c) for sufficiently strong random fields and long propagation times numerical simulations reveal pulse splitting into smaller components, parts of which propagate much slower than a wave pulse in a non-random medium. These slow waves build an initial stage of a wave localization phenomenon. However, this effect can be very weak in a real three-dimensional medium.  相似文献   

2.
We investigate the critical behavior of three-dimensional random-field Ising systems with both Gauss and bimodal distribution of random fields and additional the three-dimensional diluted Ising antiferromagnet in an external field. These models are expected to be in the same universality class. We use exact ground-state calculations with an integer optimization algorithm and by a finite-size scaling analysis we calculate the critical exponents , , and . While the random-field model with Gauss distribution of random fields and the diluted antiferromagnet appear to be in same universality class, the critical exponents of the random-field model with bimodal distribution of random fields seem to be significantly different. Received: 9 July 1998 / Received in final form: 15 July 1998 / Accepted: 20 July 1998  相似文献   

3.
We use an effective field method to analyze the thermodynamic behavior of an Ising metamagnet in uniform and random magnetic fields. Depending on the strength of the random fields, we show that the phase diagram displays a tricritical point and reentrant second-order transition lines. This reentrance is due to the competition between uniform and random interactions.  相似文献   

4.
We examine a quantum Hopfield neural-network model in the presence of trimodal random transverse fields and random neuronal thresholds within the method of statistical physics. We use the Trotter decomposition to map the problem into an equivalent classical random Hopfield-type Ising model and obtain phase transitions between the ferromagnetic retrieval and the paramagnetic phases. The influence of competition between the diluted random transverse fields and the diluted random thresholds on the system is discussed, and some interesting results such as tricritical points and reentrance are analyzed.  相似文献   

5.
Random strain fields, due to substitutional disorder, couple to translational and orientational dynamic modes in plastic crystals. One distinguishes the cases of weak and strong random fields. In weak fields, the crystal comes close to a structural phase transition. Then elastic restoring forces are weak while internal friction dominates. The resulting non ergodic instability marks the onset of a structural glass state. The evolution of the glass state is discussed within a selfconsistent theory. The results of an extensive numerical study are compared with experiment. In presence of strong random fields no instability occurs, and orientational freezing is a continuous process.  相似文献   

6.
7.
Physics of the Solid State - The influence of defects of the “random local field” type with an anisotropic distribution of random fields on two-dimensional models with continuous...  相似文献   

8.
Prequantum classical statistical field theory (PCSFT) is a model that provides the possibility to represent the averages of quantum observables (including correlations of observables on subsystems of a composite system) as averages with respect to fluctuations of classical random fields. In view of the PCSFT terminology, quantum states are classical random fields. The aim of our approach is to represent all quantum probabilistic quantities by means of classical random fields. We obtain the classical-random-field representation for pairwise correlations in three-partite quantum systems. The three-partite case (surprisingly) differs substantially from the bipartite case. As an important first step, we generalized the theory developed for pure quantum states of bipartite systems to the states given by density operators.  相似文献   

9.
This paper considers the scattering of a plane, time-harmonic wave by an inclusion with heterogeneous nonlinear elastic properties embedded in an otherwise homogeneous linear elastic solid. When the inclusion and the surrounding matrix are both isotropic, the scattered second harmonic fields are obtained in terms of the Green's function of the surrounding medium. It is found that the second harmonic fields depend on two independent acoustic nonlinearity parameters related to the third order elastic constants. Solutions are also obtained when these two acoustic nonlinearity parameters are given as spatially random functions. An inverse procedure is developed to obtain the statistics of these two random functions from the measured forward and backscattered second harmonic fields.  相似文献   

10.
Coordinates Changed Random Fields on the Sphere   总被引:1,自引:0,他引:1  
We construct time dependent random fields on the sphere through coordinates change and subordination and we study the associated angular power spectrum. Some of this random fields arise naturally as solutions of partial differential equations with random initial condition represented by a Gaussian random field.  相似文献   

11.
The influence of random mass density and velocity fields on the frequencies and amplitudes of the sound waves that propagate along a constant gravity field is examined in the limit of weak random fields, small amplitude oscillations and a weakly stratified medium. Using a perturbative method, we derive dispersion relations from which we conclude that the effect of a space-dependent random mass density field is to attenuate sound waves. Frequencies of these waves are higher than in the case of a coherent medium. A time-dependent random mass density field increases frequencies and amplifies the sounds waves. On the other hand, a space-dependent random flow reduces the wave frequencies and attenuates the sound waves. The time-dependent random flow raises the frequencies of the sound waves and amplifies their amplitudes. In the limit of the gravity-free medium the above results are in an agreement with the former findings.  相似文献   

12.
李晓杰  刘中强  王春阳  徐玉良  孔祥木 《物理学报》2015,64(24):247501-247501
近年来, 磁性纳米管的物理性质和相关应用得到了人们的广泛关注. 利用有效场理论研究了纳米管上双模随机晶场中Blume-Capel模型的磁化强度和相变性质, 得到了系统的磁化强度与温度和随机晶场的关系及其相图. 结果表明: 系统在稀释晶场、交错晶场和同向晶场中会表现出不同的磁学性质和相变行为; 稀释晶场和交错晶场会抑制系统的磁化强度, 导致其基态饱和值小于1, 而同向晶场则不会; 随着随机晶场参量的变化, 系统存在多个相变温度, 并呈现出三临界现象和重入现象.  相似文献   

13.
Simulation of the coherent Doppler LiDAR signal requires accurate computation of homogeneous random wind fields. Based on complex random processes with specified spatial statistics given by the covariance function, an improved real correlation random wind field algorithm is proposed for real random processes, the simulation results are compared with the given covariance function and the real correlation algorithm conforms to the given covariance function quite well.  相似文献   

14.
A positive almost Markovian random field is a probability measure on a lattice gas whose finite set conditional probabilities are continuous and positive. We show that each such random field has a potential and in the translation invariant case an absolutely convergent potential. We give a criterion for determining which random fields correspond to pair potentials, or in generaln-body potentials. We show that two translation invariant positive almost Markovian random fields have the same finite set conditional probabilities if and only if one minimizes the specific free energy of the other.  相似文献   

15.
16.
We use the replica method in order to obtain an expression for the variational free energy of an Ising ferromagnet on a Viana-Bray lattice in the presence of random external fields. Introducing a global order parameter, in the replica-symmetric context, the problem is reduced to the analysis of the solutions of a nonlinear integral equation. At zero temperature, and under some restrictions on the form of the random fields, we are able to perform a detailed analysis of stability of the replica-symmetric solutions. In contrast to the behaviour of the Sherrington-Kirkpatrick model for a spin glass in a uniform field, the paramagnetic solution is fully stable in a sufficiently large random field.  相似文献   

17.
We derive useful general concentration inequalities for functions of Gibbs fields in the uniqueness regime. We also consider expectations of random Gibbs measures that depend on an additional disorder field, and prove concentration w.r.t. the disorder field. Both fields are assumed to be in the uniqueness regime, allowing in particular for non-independent disorder fields. The modification of the bounds compared to the case of an independent field can be expressed in terms of constants that resemble the Dobrushin contraction coefficient, and are explicitly computable. On the basis of these inequalities, we obtain bounds on the deviation of a diffraction pattern created by random scatterers located on a general discrete point set in Euclidean space, restricted to a finite volume. Here we also allow for thermal dislocations of the scatterers around their equilibrium positions. Extending recent results for independent scatterers, we give a universal upper bound on the probability of a deviation of the random scattering measures applied to an observable from its mean. The bound is exponential in the number of scatterers with a rate that involves only the minimal distance between points in the point set.Work supported by the DFG  相似文献   

18.
We study the transverse or off-axis localization of electromagnetic waves for several different random dielectric systems which are periodic on average. Unlike previous scalar wave treatments of transverse localization, in the present work we present results based on a full vector treatment of the electromagnetic fields based on Maxwell's equations. In a first system, we consider a random semi-infinite array of slabs with plane waves or finite beams of electromagnetic waves obliquely incident on the slab surfaces. The localization of the fields in a region near the surface of illumination is studied as a function of the oblique angle of incidence. In a second system, an array of semi-infinite slabs with random thickness is considered with an incident finite beam of electromagnetic waves initially directed parallel to the slab surfaces. The spreading of the beam width is computed as it propagates through the array of semi-infinite slabs. In a final system, we consider a semi-infinite array of random dielectric rods (2D system) with obliquely incident plane waves. The localization length of the plane-wave fields is computed as a function of the oblique angle of incidence and as a function of the strength of the disorder of the dielectric medium. All the random media we consider, when averaged over their randomness, are periodic on average. The above systems are studied for both p- and s-polarizations of incident electromagnetic waves, and the difference in the transverse localization of the electromagnetic field for these two polarizations is determined.  相似文献   

19.
Two hierarchical Monte Carlo methods for the generation of self-similar fractal random fields are compared and contrasted. The first technique, successive random addition (SRA), is currently popular in the physics community. Despite the intuitive appeal of SRA, rigorous mathematical reasoning reveals that SRA cannot be consistent with any stationary power-law Gaussian random field for any Hurst exponent; furthermore, there is an inherent ratio of largest to smallest putative scaling constant necessarily exceeding a factor of 2 for a wide range of Hurst exponentsH, with 0.30<H<0.85. Thus, SRA is inconsistent with a stationary power-law fractal random field and would not be useful for problems that do not utilize additional spatial averaging of the velocity field. The second hierarchical method for fractal random fields has recently been introduced by two of the authors and relies on a suitable explicit multiwavelet expansion (MWE) with high-moment cancellation. This method is described briefly, including a demonstration that, unlike SRA, MWE is consistent with a stationary power-law random field over many decades of scaling and has low variance.  相似文献   

20.
Some basic problems of the probabilistic treatment of fields are considered, proceeding from the fundamentals of the complete probability theory. Two essentially equivalent definitions of random fields related to continuous objects are suggested. It is explained why the conventional classical probabilistic treatment generally is inapplicable to fields in principle. Two types of finite-dimensional random variables created by random fields are compared. Some general regularities related to Lagrangian and Hamiltonian partial equations, obtainable proceeding from the corresponding sets of ordinary differential equations, are revealed by using the functional derivative defined anew. It is shown that Hamiltonian random fields give rise to two types of Hamiltonian random variables, variables of the second type being those considered in the author's previous paper and immediately suited to the quantum approach. The results obtained are illustrated by some general examples. Critical remarks concerning second quantization are made, demonstrating the artificiality of this method. It is emphasized that the given probabilistic consideration of fields cannot be directly applied to, for instance, the electromagnetic field, which needs a special treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号