首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The surface interrogation mode of scanning electrochemical microscopy (SI-SECM) was used for the detection and quantification of adsorbed hydroxyl radical ˙OH((ads)) generated photoelectrochemically at the surface of a nanostructured TiO(2) substrate electrode. In this transient technique, a SECM tip is used to generate in situ a titrant from a reversible redox pair that reacts with the adsorbed species at the substrate. This reaction produces an SECM feedback response from which the amount of adsorbate and its decay kinetics can be obtained. The redox pair IrCl(6)(2-/3-) offered a reactive, selective and stable surface interrogation agent under the strongly oxidizing conditions of the photoelectrochemical cell. A typical ˙OH((ads)) saturation coverage of 338 μC cm(-2) was found in our nanostructured samples by its reduction with the electrogenerated IrCl(6)(3-). The decay kinetics of ˙OH((ads)) by dimerization to produce H(2)O(2) were studied through the time dependence of the SI-SECM signal and the surface dimerization rate constant was found to be ~k(OH) = 2.2 × 10(3) mol(-1) m(2) s(-1). A radical scavenger, such as methanol, competitively consumes ˙OH((ads)) and yields a shorter SI-SECM transient, where a pseudo-first order rate analysis at 2 M methanol yields a decay constant of k'(MeOH) ~ 1 s(-1).  相似文献   

2.
Roberts WS  Davis F  Collyer SD  Higson SP 《The Analyst》2011,136(24):5287-5293
Scanning electrochemical microscopy (SECM) has been used to image and study the catalytic activity of horseradish peroxidase (HRP) immobilised in a patterned fashion onto glass slides. Microarrays of HRP islands could be deposited on amino-modified glass slides using glutaraldehyde crosslinking combined with the SECM being used as a micro-deposition device. The enzymatic activity of the immobilised enzyme on the surface was in the presence of its substrate observed to give rise to substantial positive feedback between the slide and the SECM microelectrode tip. Conversely when either blank slides - or slides coated with HRP which had been subsequently thermally denatured were utilised, these showed negative feedback effects. Various conditions such as enzyme concentration, incubation time and substrate concentration were systematically varied to optimise sensitivity. Regular arrays of HRP could be assembled and when imaged, displayed lower limits of detection of 1.2 × 10(-12) mol ml(-1) of benzoquinone.  相似文献   

3.
The generation and application of nanodes in SECM experiments are described. Nanodes are ultramicroelectrodes with an active disk diameter in the submicrometer range. We investigated the behaviour of these electrodes by testing their properties with SECM applications which were previously performed at the micrometer scale. The active diameter of the nanodes was determined using cyclic voltammetry and SECM. The nanoanalysis was conducted at two nano interdigitated arrays. The nanostructuring was demonstrated by galvanic and electroless silver deposition from solution and from the surface, respectively. Experiments with nanodes illustrate that they exhibit the same behaviour as ultramicroelectrodes, but are more sensitive to adsorption and dirt particles in the electrolyte solution.  相似文献   

4.
In situ scanning FTIR microscopy was built up for the first time in the present work, which consists of an FTIR apparatus, an IR microscope, an X-Y mapping stage, and the specially designed electrochemical IR cell and computer software. It has been demonstrated that this new space-resolvdin situ IR technique can be used to study vibration properties of micro-area, and to perform IR imaging of electrode surface. The chemical image obtained using this technique for CO adsorption on Pt electrode illustrated, at a space-resolution of 10-2 cm, the inhomogeneity and the distribu-tion of reactivity of micro-area of electrode surface. Project supported by the National Natural Science Foundation of China (Grant No. 29525307).  相似文献   

5.
In situ scanning FTIR microscopy was built up for the first time in the present work, which consists of an FTIR apparatus, an IR microscope, an X-Y mapping stage, and the specially designed electrochemical IR cell and computer software. It has been demonstrated that this new space-resolvd in situ IR technique can be used to study vibration properties of micro-area, and to perform IR imaging of electrode surface. The chemical image obtained using this technique fur CO adsorption on Pt electrode illustrated, at a space-resolution of 10~(-2) cm, the inhomogeneity and the distribution of reactivity of micro-area of electrode surface.  相似文献   

6.
Within this work we present a ‘proof of principle’ study for the use of scanning electrochemical microscopy (SECM) to detect and image biomolecular interactions in a label-free assay as a potential alternative to current fluorescence techniques. Screen-printed carbon electrodes were used as the substrate for the deposition of a dotted array, where the dots consist of biotinylated polyethyleneimine. These were then further derivatised, first with neutravidin and then with a biotinylated antibody to the protein neuron specific enolase (NSE). SECM using a ferrocene carboxylic acid mediator showed clear differences between the array and the surrounding unmodified carbon. Imaging of the arrays before and following exposure to various concentrations of the antigen showed clear evidence for specific binding of the NSE antigen to the antibody derivatised dots. Non-specific binding was quantified. Control experiments with other proteins showed only non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen at the surface of the dots. Binding of the antigen was accompanied by a measured increase in current response, which may be explained in terms of protein electrostatic interaction and hydrophobic interactions to the mediator, thereby increasing the localised mediator flux. A calibration curve was obtained between 500 fg mL−1 to 200 pg mL−1 NSE which demonstrated a logarithmic relationship between the current change upon binding and antigen concentration without the need for any labelling of the substrate.  相似文献   

7.
DNA duplex regions of the spots on a DNA microarray were successfully visualized by scanning electrochemical microscopy (SECM) in the electrolyte containing ferrocenyl naphthalene diimide as a hybridization indicator.  相似文献   

8.
Electrochemical oxygen adsorption/desorption below monolayer level leads to a disordering of platinum single-crystal surfaces vicinal to the (1 1 1) plane. The kinetics can be described by means of a consecutive reaction from (1 1 1)-terrace sites to (1 1 0)-defect sites, in which (1 0 0)-defects act as intermediates. The first oxidation of the electrode reflects independent contributions from terrace and step sites, the latter being structure sensitive. Oxygen adsorption charges amount to a mean value of one electron per step site.  相似文献   

9.
Scanning tunneling microscopy (STM) has been used to directly investigate the local structure of methyl isocyanide (CNCH3) adsorbed on Pt(111). At low coverages, CNCH3 is preferentially adsorbed at on-top sites, in agreement with earlier deductions based on vibrational spectroscopy. When dosed at low coverages at 50 K, the molecules tend to adsorb near other CNCH3 molecules with preferred distances of a and a, where a = 2.78 A is the lattice constant of Pt. Annealing the surface to 120 K, however, results in a more uniform separation of the molecules. At higher coverages, the CNCH3 molecules are observed to occupy both on-top and two-fold bridge sites. On the basis of STM image analysis, CNCH3 forms an ordered layer of (2 x 3) periodicity at 0.33 ML. Additional details on the structures of CNCH3 adsorbed at the on-top and two-fold bridge sites are provided by density functional theory (DFT) calculations. At a coverage that saturates the first layer (0.33 ML), the occupation ratio for the on-top and two-fold bridge bonded CNCH3 is 1:1, which is consistent with the results obtained from the combined use of experimental reflection absorption infrared spectroscopy (RAIRS) data and DFT calculations.  相似文献   

10.
An approach for patterning surfaces with prepared nanoparticles is described. Chitosan-stabilized gold nanoparticles (Au/chitosan NPs) were locally deposited on stainless steel (StSt), indium tin oxide (ITO), and highly-ordered pyrolytic graphite (HOPG). Deposition was driven by local pH gradient formed between a surface and a scanning electrochemical microscopy tip set in the direct mode. The pH at the substrate was increased upon biasing the surface by negative potentials, which caused the reduction of water. As the pH on the surface exceeded that of $ {\mathrm{pK}}_{{\mathrm{chitosanH}}^{+}}\sim 6.3 $ deprotonation of the amino groups of chitosan caused the irreversible deposition of the chitosan/AuNPs. The effect of different parameters, such as tip–surface distance and time, on deposition was studied. While the potential duration showed no clear influence, smaller tip–substrate distance and more negative potentials applied to the surface caused larger deposits. The overpotential needed for the deposition of nanoparticles on HOPG was the highest while that for StSt was the lowest. On the former, the sluggish kinetics caused the deposition of ring-shaped structures while disk-shaped deposits were formed on the other surfaces.  相似文献   

11.
This work presents an electrochemical scanning tunneling microscopy study of Sb irreversibly adsorbed on Pt(111) at various potentials. At an open circuit potential (0.46 V vs a Ag/AgCl electrode), well-ordered structures of SbO+ were found: four (4 x 3)-3SbO+ structures and one (2 square root(3) x 2 square root(3))R30 degrees-3SbO+ structure. In addition, several unidentifiable transient structures of SbO+ were observed, and their relations to the well-ordered structures of (4 x 3) and (2 square root(3) x 2 square root(3))R30 degrees, regarding structural evolution, were proposed. At a reducing potential (0 V), the Pt(111) surface was covered with irreversibly adsorbed Sb which consisted of three different domains: protruded domain, domain of uniaxially incommensurate (square root(3) x square root(2))-Sb, and domain of bare (1 x 1) Pt(111). During oxidation of elemental Sb at 0.30 V, the Sb domains of the (square root(3) x square root(2)) structure were oxidized, while the protruded domains were not oxidized. After underpotential deposition of additional Sb onto the Pt(111) covered with irreversibly adsorbed Sb, the whole surface was filled with the Sb domains where each Sb atoms were separated by the square root(2a) distance (a = one Pt-Pt distance, 0.277 nm). The observed electrochemical inactivity below 0.3 V was discussed in terms of the protruded domain of a presumable incommensurate (square root(2) x square root(2)) structure.  相似文献   

12.
Scanning electrochemical microscopy (SECM) was used to investigate the effect of ion bombardment on thin films of the conducting polymers poly[3-ethoxy-thiophene] (PEOT) and poly[ethylenedioxy-thiophene] (PEDT). Bombardment with Ar+-ions converts the topmost 30 nm thick layer to an essentially insulating material. SECM approach curves as well as two dimensional scans prove the existence of regions of different conductivity within the irradiated regions that did not show a significant dependence on ion dosage. PEDT layers patterned by ion bombardment through microscopic masks are investigated as prototypes of miniaturized printed circuit boards that can be formed by galvanic copper deposition onto conducting PEDT. Defects in conducting polymer patterns were analyzed by SECM imaging before any deposition of copper. Appropriate representations of SECM images for the evaluation of this technologically important question are discussed.  相似文献   

13.
Scanning electrochemical microscopy (SECM) was used to investigate the effect of ion bombardment on thin films of the conducting polymers poly[3-ethoxy-thiophene] (PEOT) and poly[ethylenedioxy-thiophene] (PEDT). Bombardment with Ar+-ions converts the topmost 30 nm thick layer to an essentially insulating material. SECM approach curves as well as two dimensional scans prove the existence of regions of different conductivity within the irradiated regions that did not show a significant dependence on ion dosage. PEDT layers patterned by ion bombardment through microscopic masks are investigated as prototypes of miniaturized printed circuit boards that can be formed by galvanic copper deposition onto conducting PEDT. Defects in conducting polymer patterns were analyzed by SECM imaging before any deposition of copper. Appropriate representations of SECM images for the evaluation of this technologically important question are discussed.  相似文献   

14.
Eckhard K  Schuhmann W 《The Analyst》2008,133(11):1486-1497
Alternating current scanning electrochemical microscopy (AC-SECM) is a growing branch within the variety of SECM methods. This review covers publications involving AC-SECM from its beginning to date. The findings of several research groups are thematically structured along with the specific experimental procedures. This should enable researchers to rationally choose purposeful parameters for their AC-SECM experiments.  相似文献   

15.
Scanning electrochemical microscopy and scanning electron microscopy were employed to correlate the surface microstructures with surface reactivity of commercially pure zirconium. It was found that heightened reactivity was associated with iron impurities lying beneath the oxide surface. This could result in failure of nuclear reactor components fabricated using zirconium alloys due to hydrogen ingress and corrosion. COMSOL multiphysics software was used to quantify the electrochemical kinetic constants associated with the differences in surface reactivity.  相似文献   

16.
17.
18.
In this work, scanning electrochemical microscopy (SECM) measurements were employed to characterize the electrochemical activities on polished and as-received surfaces of the 2098-T351 aluminum alloy (AA2098-T351). The effects of the near surface deformed layer (NSDL) and its removal by polishing on the electrochemical activities of the alloy surface were evaluated and compared by the use of different modes of SECM. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were also employed to characterize the morphology of the surfaces. The surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS). The surface generation/tip collection (SG/TC) and competition modes of the SECM were used to study hydrogen gas (H2) evolution and oxygen reduction reactions, respectively. H2 evolution and oxygen reduction were more pronounced on the polished surfaces. The feedback mode of SECM was adopted to characterize the electrochemical activity of the polished surface that was previously corroded by immersion in a chloride-containing solution, in order to investigate the influence of the products formed on the active/passive domains. The precorroded surface and as-received surfaces revealed lower electrochemical activities compared with the polished surface showing that either the NSDL or corrosion products largely decreased the local electrochemical activities at the AA2098-T351 surfaces.  相似文献   

19.
Scanning electrochemical microscopy (SECM) was combined with surface plasmon resonance (SPR) and applied for in-situ monitoring of the incorporation of Hg2+ by apo-metallothionein (apo-MT) immobilized on the SPR substrate. Hg2+ was anodically stripped from the Hg-coated SECM Pt tip and sequestered by apo-MT upon its diffusion to the SPR substrate. The high sensitivity of the SPR instrument enabled the detection of the change in the composition and structure of apo-MT molecules that was induced by the metal sequestration of Hg2+. The SPR response revealed that the saturation co-ordination number of Hg2+ binding to apo-MT was 18. Moreover, an unexpected collapse of the structure of MT was observed when the stoichiometric ratio of Hg2+/MT was ~70, and the structure cannot be further altered even by adding a large excess of Hg2+. This collapse was also confirmed by Raman spectroscopy. The results are potentially useful for a deeper understanding of the detoxification mechanism of MT to mercury ion.
Figure
Scanning electrochemical microscopy combined with surface plasmon resonance was applied to in-situ monitoring of the interaction of Hg2+ with apo-metallothionein. The results revealed that the saturation co-ordination number of Hg2+ binding to apo-metallothionein was 18. Moreover, an unexpected structure collapse of MT is observed when the stoichiometric ratio of Hg2+/MT is ~70.  相似文献   

20.
The adsorption of formaldehyde (HCHO) on Pt(111) and Pt(100) electrodes was examined by cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) in 0.1 M HClO(4). The extent of HCHO adsorption at both Pt electrodes was evaluated by comparing the CVs, particularly for the hydrogen adsorption and desorption between 0.05 and 0.4 V, obtained in 0.1 M HClO(4) with and without HCHO. The adsorption of HCHO on these Pt electrodes was significant only when [HCHO] >/= 10 mM. Adsorbed organic intermediate species acted as poisons, blocking Pt surfaces and causing delays in the oxidation of HCHO. Compared to Pt(111), Pt(100) was more prone to poisoning, as indicated by a 200 mV positive shift of the onset of HCHO oxidation. However, Pt(100) exhibited an activity 3 times higher than that of Pt(111), as indicated by the difference in peak current density of HCHO oxidation. Molecular resolution STM revealed highly ordered structures of Pt(111)-( radical7 x radical7)R19.1 degrees and Pt(100)-( radical2 x radical2) in the potential region between 0.1 and 0.3 V. Voltammetric measurements further showed that the organic poisons produced by HCHO adsorption behaved differently from the intentionally dosed CO admolecules, which supports the assumption for the formation of HCO or COH adspecies, rather than CO, as the poison. On both Pt electrodes, HCHO oxidation commenced preferentially at step sites at the onset potential of this reaction, but it occurred uniformly at the peak potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号