首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Al–Sn, which is immiscible alloy, film was prepared by e-beam deposition to explore the possibility as anode material for lithium ion batteries for the first time. The film has a complex structure with tiny Sn particles dispersed homogeneously in the Al active matrix. The diffusion coefficients of Li+ in these Al–Sn alloy films were determined to be 2.1–3.2 × 10−8 cm2/s by linear sweep voltammetry. The film electrode with high Al content (Al–33wt%Sn) delivered a high initial discharge capacity of 972.8 mA h g−1, while the film electrode with high Sn content (Al–64wt%Sn) with an initial discharge capacity of 552 mA h g−1 showed good cycle performance indicated by retaining a capacity of about 381 mA h g−1 after 60 cycles. Our preliminary results demonstrate that Al–Sn immiscible alloy is a potential candidate for anodic material of lithium ion batteries.  相似文献   

2.
One-dimensional (1-D) carbon nanofibers anchored with partially reduced SnO2 nanoparticles (SnO2/Sn@C) were successfully synthesized through a simple electrospinning method followed by carbon coating and thermal reduction processes. The partially reduced Sn frameworks, combined with the carbon fibers, provide a more favorable mechanism for sodiation/desodiation than SnO2. As a result, SnO2/Sn@C exhibits a high reversible capacity (536 mAh g 1 after 50 cycles) and an excellent rate capability (396 mAh g 1 even at 2 C rate) when evaluated as an anode material for sodium-ion batteries (SIBs).  相似文献   

3.
Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7 has been evaluated as a positive electrode for sodium-ion batteries. The novel material has two redox couples around 4.2 V and 4.6 V and can deliver the high capacity of ca. 103 mAh g 1 at the high current density of 850 mA g 1 (5 C). X-ray absorption spectroscopy (XAS) results show that the redox reactions of Co, Mn and Ni ions proceed simultaneously in the charge process and it is indicated the novel material provide high mixed potential by the redox reactions of Co, Mn and Ni ions. These findings suggest that the derivatives of Na4Co3(PO4)2P2O7 should be employed as high potential and high capacity electrode materials.  相似文献   

4.
NiCo2O4 nanosheets supported on Ni foam were synthesized by a solvothermal method. A composite of NiCo2O4 nanosheets/Ni as a carbon-free and binder-free air cathode exhibited an initial discharge capacity of 1762 mAh g 1 with a low polarization of 0.96 V at 20 mA g 1 for sodium–air batteries. Na2O2 nanosheets were firstly observed as the discharged product in sodium–air battery. High electrocatalytic activity of NiCo2O4 nanosheets/Ni made it a promising air electrode for rechargeable sodium–air batteries.  相似文献   

5.
We report the synthesis and characterization of SnO2@multiwalled carbon nanotubes (MWCNTs) nanocomposite as a high capacity anode material for sodium-ion battery. SnO2@MWCNT nanocomposite was synthesized by a solvothermal method. SEM and TEM analyses show the uniform distribution of SnO2 nanoparticles on carbon nanotubes. When applied as anode materials in Na-ion batteries, SnO2@MWCNT nanocomposite exhibited a high sodium storage capacity of 839 mAh g 1 in the first cycle. SnO2@MWCNT nanocomposite also demonstrated much better cycling performance than that of bare SnO2 nanoparticles and bare MWCNTs. Furthermore, the nanocomposite electrode also showed a good cyclability and an enhanced Coulombic efficiency on cycling.  相似文献   

6.
Submicro/micro-scaled spherical Sn–Ni–C alloy powders synthesized from oxides of Sn and Ni via carbothermal reduction at 900 °C were examined for use as anode materials in Li-ion battery. The synthesized spherical Sn–Ni–C particles show a loose micro-sized structure and a multi-phase composition. The reaction product carbon oxide gases yielded in the carbothermal reduction process should be responsible to the loose structure characteristics of Sn–Ni–C particles. The prepared Sn–Ni–C alloy composite electrode exhibits a stable reversible capacity of 310 mA h g−1 at constant current density of 100 mA g−1, and can be retained at 290 mA h g−1 after 25 cycles. The space existing in loose particle can accommodate the large volume changes during charge/discharge cycling. The ductile component Ni plays as a buffer to relieve the mechanical stress induced by the large volume changes upon cycling. The remained carbon can prevent the aggregation between small alloy particles. All these factors contribute greatly to the excellent cycling stability of Sn–Ni–C alloy electrode. This carbothermal reduction method is simple, cheap and mass-productive, thus suitable to large scale production of alloy anode powders used for lithium ion batteries.  相似文献   

7.
We report significant electrochemical performances promoting SnSb as one of the most promising negative electrode material for rechargeable batteries. Appropriately formulated with the carboxymethyl cellulose binder and cycled in fluoroethylene carbonate containing electrolyte, it could sustain a reversible capacity largely exceeding 525 mAh g 1 over more than 125 cycles at a rate of C/2 (55 mA/g), with a satisfactory coulombic efficiency of more than 97%. To our knowledge, this is actually the longest cycle life ever reported for an electrode material vs. sodium.  相似文献   

8.
We report self-supported porous Co/NiO core/shell nanowire arrays via the combination of hydrogen reduction and chemical bath deposition methods. The Co nanowire acts as the backbone for the growth of NiO nanoflake shell forming hierarchically porous Co/NiO core/shell nanowire arrays. As electrode materials for pseudo-capacitors, the Co/NiO core/shell nanowire arrays exhibit a specific capacitance of 956 F g 1 at 2 Å g 1 and 737 F g 1 at 40 Å g 1, and good cycling stability, which is mainly due to the metal nanowire based core/shell nanowire architecture which provides good conductive network as well as fast ion/electron transfer and sufficient contact between active materials and electrolyte.  相似文献   

9.
Besides classical electrode materials pertaining to Li-ion batteries, recent interest has been devoted to pairs of active redox composites having a redox center and an intercalant source. Taking advantage of the NaPF6 salt decomposition above 4.2 V, we extrapolate this concept to the electrochemical in situ preparation of F-based MnO composite electrodes for Na-ion batteries. Such electrodes exhibit a reversible discharge capacity of 145 mAh g 1 at room temperature. The amorphization of pristine MnO electrode after activation is attributed to the electrochemical grinding effect caused by substantial atomic migration and lattice strain build-up upon cycling.  相似文献   

10.
This work introduces an effective, inexpensive, and large-scale production approach to the synthesis of Fe2O3 nanoparticles with a favorable configuration that 5 nm iron oxide domains in diameter assembled into a mesoporous network. The phase structure, morphology, and pore nature were characterized systematically. When used as anode materials for lithium-ion batteries, the mesoporous Fe2O3 nanoparticles exhibit excellent cycling performance (1009 mA h g 1 at 100 mA g 1 up to 230 cycles) and rate capability (reversible charging capacity of 420 mA h g 1 at 1000 mA g 1 during 230 cycles). This research suggests that the mesoporous Fe2O3 nanoparticles could be suitable as a high rate performance anode material for lithium-ion batteries.  相似文献   

11.
Na-rich layered oxides as cathode materials for sodium-ion batteries were designed using an electrochemical method based on Li-rich layered oxides. The materials show high specific capacity that can reach 234 mAh/g at a current of 5 mA/g. The energy density of this material (644 Wh/kg) is even higher than those of commercial cathodes for lithium-ion batteries, such as LiFePO4 and LiMn2O4. Kinetic analysis of Na+ insertion/extraction into/from the Na-rich layered oxide reveals that the Na+ diffusion coefficient is about 10 14 cm2/s.  相似文献   

12.
We report the electrochemical performance of carbon-coated TiO2 nanobarbed fibers (TiO2@C NBFs) as anode material for lithium-ion batteries. The TiO2@C NBFs are composed of TiO2 nanorods grown on TiO2 nanofibers as a core, coated with a carbon shell. These nanostructures form a conductive network showing high capacity and C-rate performance due to fast lithium-ion diffusion and effective electron transfer. The TiO2@C NBFs show a specific reversible capacity of approximately 170 mAh g 1 after 200 cycles at a 0.5 A g 1 current density, and exhibit a discharge rate capability of 4 A g 1 while retaining a capacity of about 70 mAh g 1. The uniformly coated amorphous carbon layer plays an important role to improve the electrical conductivity during the lithiation–delithiation process.  相似文献   

13.
The combination of a vertically aligned carbon nanotube array (CNTA) framework and electrodeposition technique leads to a tube-covering-tube nanostructured polyaniline (PANI)/CNTA composite electrode with hierarchical porous structure, large surface area, and superior conductivity. PANI/CNTA composite electrode has high specific capacitance (1030 F g−1), superior rate capability (95% capacity retention at 118 A g−1), and high stability (5.5% capacity loss after 5000 cycles). Energy storage characteristics of the PANI/CNTA composite are presented in this paper.  相似文献   

14.
Vanadium dioxide (VO2) nano-sheets were directly synthesized via a continuous hydrothermal process and were investigated as electrodes in a wide potential range of 0.05–3 V vs. Li/Li+. The nano-sheets showed excellent capacity retention, with a specific capacity of 350 mAh g 1 at an applied current of 0.1 A g 1 and 95 mAh g 1 at 10 A g 1. Further electrochemical testing suggested that a significant proportion of the charge storage in the cells was due to pseudocapacitive processes.  相似文献   

15.
Sodium/sulfur (Na/S) batteries were assembled with a sodium metal anode, liquid electrolyte and a sulfur composite cathode. Their electrochemical characteristics have been investigated at room temperature. Their charge/discharge curves indicate that sodium can reversibly react with sulfur at room temperature. The specific capacity of the sulfur composite cathode material in the first cycle was initially about 655 mA h g−1 and stayed at about 500 mA h g−1 up to the 18th cycle with about 100% charge/discharge efficiency.  相似文献   

16.
Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL 1 and 0.51 ng mL 1, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL 1 for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e.  相似文献   

17.
Nano-sized insoluble iron, cobalt and nickel hexacyanoferrates (Mhcf) were prepared by a simple co-precipitation method. The potential of using these materials for supercapacitor was examined by cyclic voltammogram and constant charge/discharge. Due to the different types of the second metal (M), the Mhcf electrodes showed different electrochemical capacitive performances. The specific discharge capacitances of Fehcf, Nihcf and Cohcf electrodes at the current density of 0.2 A g−1 were 425 F g−1, 574.7 F g−1 and 261.56 F g−1, respectively. Meanwhile, the Mhcf electrodes showed good cyclic performance.  相似文献   

18.
Activated carbon was produced from waste coffee grounds by treatment with ZnCl2. Supercapacitor electrodes prepared from this coffee grounds carbon exhibited energy densities up to 20 Wh kg−1 in 1 M H2SO4, and excellent stability at high charge–discharge rates. In a two-electrode cell a specific capacitance as high as 368 F g−1 was observed, with rectangular cyclic voltammetry curves and stable performance over 10,000 cycles at a cell potential of 1.2 V and current load of 5 A g−1. The good electrochemical performance of the coffee grounds carbon was attributed to a well developed porosity, with a distribution of micropores and mesopores 2–4 nm wide, and the presence of electrochemically active quinone oxygen groups and nitrogen functional groups. This work highlights the potential to utilize waste biomass to produce electrode materials for cost-effective energy storage systems.  相似文献   

19.
The birnessite type manganese dioxide electrode was prepared by the electrochemical stimulation as we recently described. It showed 190 F g−1 in a Na2SO4 aqueous solution between −0.1 and 0.9 V versus Ag/AgCl at 1 A g−1. The specific capacitance of birnessite was decreased by the manganese dissolution when the reduction and oxidation were repeated. By adding small amounts of Na2HPO4 or NaHCO3 into the electrolyte, the capacitance increased to 200–230 F g−1 and the manganese dissolution was successfully suppressed. Thanks to the additives, the birnessite demonstrated the much improved cycleability over >1800 cycles.  相似文献   

20.
Nano-sized nickel ferrite (NiFe2O4) was prepared by hydrothermal method at low temperature. The crystalline phase, morphology and specific surface area (BET) of the resultant samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and nitrogen physical adsorption, respectively. The particle sizes of the resulting NiFe2O4 samples were in the range of 5–15 nm. The electrochemical performance of NiFe2O4 nanoparticles as the anodic material in lithium ion batteries was tested. It was found that the first discharge capacity of the anode made from NiFe2O4 nanoparticles could reach a very high value of 1314 mAh g−1, while the discharge capacity decreased to 790.8 mAh g−1 and 709.0 mAh g−1 at a current density of 0.2 mA cm−2 after 2 and 3 cycles, respectively. The BET surface area is up to 111.4 m2 g−1. The reaction mechanism between lithium and nickel ferrite was also discussed based on the results of cycle voltammetry (CV) experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号