首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y-doped BaZrO3 (BZY) electrolyte films are successfully fabricated by utilizing the driving force from the anode substrate, aiming to circumvent the refractory nature of BZY materials. The BZY electrolyte film on the high shrinkage anode becomes dense after sintering even though no sintering aid is added, while the BZY electrolyte remains porous on the conventional anode substrate after the same treatment. The resulting BZY electrolyte shows a high conductivity of 4.5 × 10 3 S cm 1 at 600 °C, which is 2 to 20 times higher than that for most of BZY electrolyte films in previous reports. In addition, the fuel cell with this BZY electrolyte generates a high power output of 267 mW cm 2 at 600 °C. These results suggest the strategy presented in this study provides a promising way to prepare BZY electrolyte films for fuel cell applications.  相似文献   

2.
Iridium oxide (IrOx) has been widely studied due to its applications in electrochromic devices, pH sensing, and neural stimulation. Previous work has demonstrated that both Ir and IrOx films with porous morphologies prepared by sputtering exhibit significantly enhanced charge storage capacities. However, sputtering provides only limited control over film porosity. In this work, we demonstrate an alternative scheme for synthesizing nanoporous Ir and activated IrOx films (AIROFs). This scheme utilizes atomic layer deposition to deposit a thin conformal Ir film within a nanoporous anodized aluminum oxide template. The Ir film is then activated by potential cycling in 0.1 M H2SO4 to form a nanoporous AIROF. The morphologies and electrochemical properties of the films are characterized by scanning electron microscopy and cyclic voltammetry, respectively. The resulting nanoporous AIROFs exhibit a nanoporous morphology and enhanced cathodal charge storage capacities as large as 311 mC/cm2.  相似文献   

3.
The Al–Sn, which is immiscible alloy, film was prepared by e-beam deposition to explore the possibility as anode material for lithium ion batteries for the first time. The film has a complex structure with tiny Sn particles dispersed homogeneously in the Al active matrix. The diffusion coefficients of Li+ in these Al–Sn alloy films were determined to be 2.1–3.2 × 10−8 cm2/s by linear sweep voltammetry. The film electrode with high Al content (Al–33wt%Sn) delivered a high initial discharge capacity of 972.8 mA h g−1, while the film electrode with high Sn content (Al–64wt%Sn) with an initial discharge capacity of 552 mA h g−1 showed good cycle performance indicated by retaining a capacity of about 381 mA h g−1 after 60 cycles. Our preliminary results demonstrate that Al–Sn immiscible alloy is a potential candidate for anodic material of lithium ion batteries.  相似文献   

4.
NiO thin films grown on Si (100) substrate by electron beam evaporation method and sintered at 700 °C were irradiated with 200 MeV Au15+ ions. The fcc structure of the sintered films was retained up to the highest fluence (1×1013 ions cm?2) of irradiation. However the microstructure of the pristine film underwent a considerable modification with increasing ion fluence. 200 MeV Au ion irradiation led to compressive stress generation in NiO medium. The diameter of the stressed region created by 200 MeV Au ions along the ion path was estimated from the variation of stress with ion fluence and found to be ~11.6 nm. The film surface started cracking when irradiated at and above the fluence of 3×1012 ions cm?2. Ratio of the fractal dimension of the cracked surface obtained at 200 MeV and 120 MeV (Mallick et al., 2010a) Au ions was compared with the ratio of the radii of ion tracks calculated based on Coulomb explosion and thermal spike models. This comparison indicated applicability of thermal spike model for crack formation.  相似文献   

5.
Gold (Au) films with open interconnected macroporous walls and nanoparticles have been successfully sculptured using the hydrogen bubble dynamic template synthesis followed by a galvanic replacement reaction. Copper (Cu) films with open interconnected macroporous walls and nanoparticles were synthesized using the electrochemically generated hydrogen bubbles as a dynamic template. Then through a galvanic replacement reaction between the porous Cu sacrificial templates and KAu(CN)2 in solution, the porous Cu films were converted to porous Au films with the similar morphologies. Additional electrochemical dealloying process was introduced to remove the remaining Cu from the porous Au films. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), X-ray diffraction (XRD) and electrochemical methods were adopted to characterize the porous Au films. The resulted porous Au films show excellent catalytic activity toward the electrooxidation of glucose. A nonenzymatic glucose sensor based on those Au film electrodes shows a linear range from 2 to 10 mM with a sensitivity of 11.8 μA cm−2 mM−1, and a detection limit of 5 μM.  相似文献   

6.
Vanadium nitride thin film has been coupled with electrodeposited nickel oxide in order to design an electrochemical capacitor microdevice. VN has been used as negative electrode while NiO was used as the positive one in 1 M KOH electrolyte. VN exhibits a pseudo-capacitive behavior while NiO shows a faradaic behavior. This asymmetric microdevice has been operated between 0.5 and up to 1.8 V in aqueous based electrolyte (1 M KOH). Long term cycling ability (10,000 charge/discharge cycles) has been demonstrated with interesting energy (1.0 μW h cm 2) and power (40 mW cm 2) densities.  相似文献   

7.
A novel strategy to achieve 3D pattern transfer into silicon in a single step without using lithography is presented. Etching is performed electrochemically in HF media by contacting silicon with a positively biased, patterned, metal electrode. Dissolution is localized at the Si/metal contacts and patterning is obtained as the electrode digs into the substrate. Previous attempts at imprinting Si using bulk metal electrodes have been limited by electrolyte blockage. Here, the problem is solved by using, for the first time, a nanoporous metal electrode that allows the electrolyte to access the entire Si/metal interface, irrespective of the electrode dimensions. As a proof of concept, imprinting of well-defined arrays of inverted pyramids has been performed with sub-micrometer spatial resolution over 1 mm2 using a nanoporous gold electrode of the complementary shape. Under a polarization of + 0.3 V/SME in 5 M HF, the etch rate is ~ 0.5 μm min 1. The pyramidal pattern is imprinted independently of the Si crystallographic orientation. This maskless imprinting technique opens new opportunities in the fabrication of Si microstructures.  相似文献   

8.
Here we report on the synthesis of binary transition metal nitride electrodes based on titanium vanadium nitride (TiVN) thin films. These films were deposited by a method compatible with micro-electronic processes which consists of DC co-sputtering of vanadium (V) and titanium (Ti) targets. TiVN films with different Ti/V ratio were deposited. A dependence of the capacitance and the cycling stability with the Ti/V atomic ratio in the films was established. While V rich sample exhibits a Faradic behavior that limits its cycling ability despite a high areal and volumetric capacity, the addition of Ti in the film drastically improves the cycling ability with virtually no fade in capacitance after 10,000 cycles. Furthermore, a 1.1 Ti/V ratio leads to an areal capacitance up to 15 mF·cm 2 in 1 M KOH electrolyte solution. Such electrodes shed light on the use of binary transition metal nitrides as candidate electrodes for micro-supercapacitor.  相似文献   

9.
A thin film hafnium-tantalum combinatorial library with a compositional spread of over 70 at.% was used for electrochemical dissolution experiments in nitric acid. Surface microstructure analysis and crystallographic characterization of individual Hf–Ta alloys confirmed a hexagonal to tetragonal transition from pure Hf to pure Ta accompanied by a change in the surface grain structure. A flow-type scanning droplet cell microscope coupled to downstream analytics was used for the quantification of Hf and Ta dissolution rates along the entire compositional spread. Potentiostatically applying 3 V vs. SHE for 120 s for an electrolyte flow of 0.46 ml min 1 resulted in dissolution rates of pure Hf and pure Ta in the ng s 1 cm 2 and pg s 1 cm 2 range, respectively. For both species, the average dissolution rate was independent of the compositional gradient, indicating a dissolution enhancement of minor species. A decrease in their activation energy for dissolution triggered by a surface energy modification was the reason for the observed behavior.  相似文献   

10.
Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50–700 cm−1 were identified based on group theory. The symmetries of the high order Raman modes in 900–1500 cm−1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400–700 cm−1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.  相似文献   

11.
Raman analyses were performed on thin films prepared from B-doped Si nanoparticles with an average diameter of 15 nm using the spin-coating method. The resulting spectrum exhibited a broad band with a peak near 520 cm−1. The band was decomposed into three bands corresponding to the crystalline, grain boundary (GB), and amorphous regions by the least-squares band-fitting method based on the three Voigt bands. The fractions of the crystalline, GB, and amorphous regions were 37%, 35%, and 28%, respectively. A spherical particle exhibited an ordered crystalline core surrounded by a disordered shell in a transmission electron microscope (TEM) image. The crystalline fraction of the 15-nm B-doped Si nanoparticle film was much lower than that of the 19-nm P-doped Si nanoparticle film. This result suggested that the B-doping mechanism was different from that of P-doping. The temperature of the sample was estimated from the ratio of the peak intensities of anti-Stokes to Stokes Raman bands (IAS/IS) observed near 520 cm−1. The temperature of the B-doped Si nanoparticle film upon irradiation at a power density of 4.6 kW/cm2 was 298 °C, whereas the temperature of the P-doped Si nanoparticle film was 92 °C. The B-doped Si nanoparticle films were capable of producing light-induced heat.  相似文献   

12.
A high performance cathode-supported solid oxide fuel cell (SOFC), suitable for operating in weakly humidified hydrogen and methane, has been developed. The SOFC is essentially made up by a YSZ/LSM composite supporting cathode, a thin YSZ film electrolyte, and a GDC-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode. A gas tight thin YSZ film (∼27 μm) was formed during the co-sintering of cathode/electrolyte bi-layer at 1200 °C. The cathode-supported SOFC developed in this study showed encouraging performance with maximum power density of 0.182, 0.419, 0.628 and 0.818 W cm−2 in air/3% H2O–97% H2 (and 0.06, 0.158, 0.221 and 0.352 W cm−2 in air/3% H2O–97% CH4) at 750, 800, 850 and 900 °C, respectively. Such performance is close to that of the cathode-supported cell (0.42 W cm−2 vs. 0.455 W cm−2 in humidified H2 at 800 °C) developed by Yamahara et al. [Solid State Ionics 176 (2005) 451–456] with a Co-infiltrated supporting LSM-YSZ cathode, a (Sc2O3)0.1(Y2O3)0.01(ZrO2)0.89 (SYSZ) electrolyte of 15 μm in thickness and a SYSZ/Ni anode, indicating that the performance of the GDC-impregnated LSCM anode is comparable to that made of Ni cermet while stable in weakly humidified methane fuel.  相似文献   

13.
A cost-effective successive ionic layer adsorption and reaction (SILAR) method was used to deposit copper (I) thiocyanate (CuSCN) thin films on glass and steel substrates for this study. The deposited thin films were characterized for their structural, morphological, optical and electrochemical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectroscopy and VersaSTAT potentiostat. A direct band gap of 3.88 eV and 3.6 eV with film thickness of 0.7 μm and 0.9 μm was obtained at 20 and 30 deposition cycles respectively. The band gap, microstrain, dislocation density and crystal size were observed to be thickness dependent. The specific capacitance of the CuSCN thin film electrode at 20 mV/s was 760 F g−1 for deposition 20 cycles and 729 F g−1 for deposition 30 cycles.  相似文献   

14.
The paper reports the operation of a new-design microbial fuel cell using compost leachate as a substrate, oxygen/electrodeposited MnOx cathode and a new-anode concept with graphite modified by an iron/sulfur solid chemical catalyst which almost eliminates the starting delay time and gives very high current and power densities, I ~ 25 A m 3 at Pmax ~ 12 W m 3 or I ~ 3.8 A m 2 at Pmax ~ 1.8 W m 2.  相似文献   

15.
In this study a process has been introduced to replace traditional liquid or solid electrolyte coatings on dye-sensitized photoelectrode in solar cells. This process has more efficient diffusion of electrolyte, hence higher sensitivity. Better interfacial contact between polymer electrolyte and TiO2 photoelectrode had improved electrochemical response and ionic conductivity of cell. Conductivity of this electrode was 9.33 × 10−3 S cm−1 (at room temperature), which is much higher than the using traditional process for addition of electrolytes. It has 0.68 V open-circuit voltage and 3.19 mA cm−2 short-circuit current density. Energy conversion efficiency of this cell was about 37% higher than the cell developed with traditional processes under constant light intensity (45 mW cm−2).  相似文献   

16.
The development of a powerful, cyclically stable and electrically rechargeable zinc-oxygen battery with a three-electrode configuration is reported. A copper foam was used as stable substrate for zinc deposition in flowing potassium hydroxide electrolyte, while oxygen reduction and evolution were accomplished by a commercial silver electrode and a nickel foam, respectively. The cell could be charged and discharged with up to 600 mA cm 2, delivered a peak power density of 270 mW cm 2, and performed for more than 600 cycles, although short circuits by dendrite formation could not yet be completely avoided. At a current density of 50 mA cm 2 and a temperature of 30 °C, a promising energy efficiency of 54% was achieved.  相似文献   

17.
The photonic and electrochemical properties of a novel Ru–phenolate based metallopolymer are reported. The complex undergoes a ruthenium based reversible oxidation at approximately +0.400 V and irreversible box ligand oxidation at +0.800 V vs. Ag/AgCl. Oxidation of thin films in aqueous electrolyte at +0.500 V reversibly switches the colour from wine red to light green and a red orange colour is observed for mixed redox composition. In contrast, oxidation at potentials more positive than +1.500 V shows no visible colour change but produces a change in the near infra-red region. To determine the electrochromic switching rate and to identify the rate determining step of the, scan rate dependent cyclic voltammetry was performed under semi-infinite linear diffusion conditions in aqueous lithium perchlorate. These data reveal that the homogeneous charge transport diffusion coefficient, DCT, is 3.6 ± 0.2 × 10−13 cm2 s−1, i.e., under these conditions it takes approximately 90 s to fully oxidise a 100 nm thick film.  相似文献   

18.
《Vibrational Spectroscopy》2010,52(2):283-288
The far-infrared and Raman spectra of binuclear molecules [Me2AuX]2 (X = Cl, Br, I) and [Me2Au(OOCR)]2 (R = Me, CF3, But, Ph) in the 600–70 cm−1 region are reported. The experimentally measured vibrational frequencies of [Me2AuX]2 are in a good agreement with density functional theory predictions. The Au…Au vibrational interactions predicted to be in the 270–60 cm−1 region of [Me2AuX]2 far-IR and Raman spectra have been observed. The Raman-active Au…Au vibrations of the [Me2Au(OOCR)]2 molecules were found to be in the same region as those of [Me2AuX]2. The Au–X stretching modes were observed between 100 and 250 cm−1 in accordance with the DFT predictions. Their frequencies in the IR spectra of [Me2AuX]2 increase in the sequence I < Br < Cl while the AuC2 stretching frequencies decrease in the same order. This fact might be an evidence of the decreasing covalent character of the gold-halogen bridges. The Au–O stretching bands of dimethylgold(III) carboxylates have been observed in the 500–250 cm−1 region, and Au–C stretching frequencies of both [Me2AuX]2 and [Me2Au(OOCR)]2 compounds have been found between 600 and 500 cm−1.  相似文献   

19.
Nanoporous nickel hydroxide film has been successfully electrodeposited on titanium substrate from nickel nitrate dissolved in the aqueous domains of the hexagonal lyotropic liquid crystalline phase of Brij 56. Low-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM) studies show that the film has a regular nanostructure consisting of a hexagonal array of cylindrical pores with a repeat center-to-center spacing of about 7 nm. Preliminary electrochemical studies are carried out using cyclic voltammetry (CV) and chronopotentiometry technology. A maximum specific capacitance of 578 F g−1 could be achieved for the nanoporous Ni(OH)2 film electrode, suggesting its potential application in electrochemical capacitors.  相似文献   

20.
We have explored electrochemically deposited pervoskite nanocrystalline porous bismuth iron oxide (BiFeO3) thin film electrode from alkaline bath for electrochemical supercapacitors. The pervoskite BiFeO3 nanocrystalline thin film electrode showed comparable specific capacitance of 81 F g−1 and electrochemical supercapacitive performance and stability in an aqueous NaOH electrolyte to that of commonly used ruthenium based pervoskites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号