首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipid metabolism plays a significant role in influenza virus replication and subsequent infection. The regulatory mechanism governing lipid metabolism and viral replication is not properly understood to date, but both Phospholipase D (PLD1 and PLD2) activities are stimulated in viral infection. In vitro studies indicate that chemical inhibition of PLD1 delays viral entry and reduction of viral loads. The current study reports a three-dimensional pharmacophore model based on 35 known PLD1 inhibitors. A sub-set of 25 compounds was selected as the training set and the remaining 10 compounds were kept in the test set. One hundred and twelve pharmacophore models were generated; a six-featured pharmacophore model (AADDHR.57) with survival score (2.69) produced a statistically significant three-dimensional quantitative structure–activity relationship model with r2 = 0.97 (internal training set), r2 = 0.71 (internal test set) and Q2 = 0.64. The predictive power of the pharmacophore model was validated with an external test set (r2 = 0.73) and a systematic virtual screening work-flow was employed showing an enrichment factor of 23.68 at the top 2% of the dataset (active and decoys). Finally, the model was used for screening of the filtered PubChem database to fetch molecules which can be proposed as potential PLD1 inhibitors for blocking influenza infection.  相似文献   

2.
ATP dependent ParE enzyme is as an attractive target for the development of antibacterial agents. Atom based 3D-QSAR model AADHR.187 was developed based on the thirty eight Escherichia coli ParE inhibitors. The generated model showed statistically significant coefficient of determinations for the training (R2 = 0.985) and test (R2 = 0.86) sets. The cross-validated correlation coefficient (q2) was 0.976. The utility of the generated model was validated by the enrichment study. The model was also validated with structurally diverse external test set of ten compounds. Contour plot analysis of the generated model unveiled the chemical features necessary for the E. coli ParE enzyme inhibition. Extra-precision docking result revealed that hydrogen bonding and ionic interactions play a major role in ParE protein-ligand binding. Binding free energy was computed for the data set inhibitors to validate the binding affinity. A 30-ns molecular dynamics simulation showed high stability and effective binding of inhibitor 34 within the active site of ParE enzyme. Using the best fitted model AADHR.187, pharmacophore-based high-throughput virtual screening was performed to identify virtual hits. Based on the above studies three new molecules are proposed as E. coli ParE inhibitors with high binding affinity and favourable ADME properties.  相似文献   

3.
A pharmacophore model has been developed using diverse classes of epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitors useful in the treatment of human tumours. Among the top 10 generated hypotheses, the second hypothesis, with one hydrogen bond acceptor, one ring aromatic and three hydrophobic features, was found to be the best on the basis of Cat Scramble validation as well as test set prediction (r training?=?0.89, r test?=?0.82). The model also maps well to the external test set molecules as well as clinically active molecules and corroborates the docking studies. Finally, 10 hits were identified as potential leads after virtual screening of ZINC database for EGFR TK inhibition. The study may facilitate the designing and discovery of novel EGFR TK inhibitors.  相似文献   

4.
This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.  相似文献   

5.
Post-translation modification of microtubules is associated with many diseases like cancer. Alpha Tubulin Acetyltransferase 1 (ATAT1) is a major enzyme that acetylates ‘Lys-40’ in alpha-tubulin on the luminal side of microtubules and is a drug target that lacks inhibitors. Here, we developed pharmacophore anchor models of ATAT1 which were constructed statistically using thousands of docked compounds, for drug design and investigating binding mechanisms. Our models infer the compound moiety preferences with the physico-chemical properties for the ATAT1 binding site. The results from the pharmacophore anchor models show the three main sub-pockets, including S1 acetyl site, S2 adenine site, and S3 diphosphate site with anchors, where conserved moieties interact with respective sub-pocket residues in each site and help in guiding inhibitor discovery. We validated these key anchors by analyzing 162 homologous protein sequences (>99 species) and over 10 structures with various bound ligands and mutations. Our results were consistent with previous works also providing new interesting insights. Our models applied in virtual screening predicted several ATAT1 potential inhibitors. We believe that our model is useful for future inhibitor discovery and for guiding lead optimization.  相似文献   

6.
Multidrug resistance (MDR) is one of the serious problems in cancer research that causes failure in chemotherapy. Chromene-based compounds have been proven to be the novel anti-MDR agents for inhibiting proliferation of tumor cells through tubulin polymerization inhibition of by binding at the colchicine binding site. In this study, we screened a chromene-based database of small molecules using physicochemical, ADMET properties and molecular docking to identify potential hit compounds. In order to validate our hit compounds, molecular dynamics simulations and related analysis were carried out and the results suggest that our hit compounds (PubChem CIDs: 16814409, 17594471, 57367244 and 69899719) can prove to be potential inhibitors of tubulin. The in silico results show that the present hits, like colchicine, effectively suppressed the dynamic instability of microtubules and induced microtubule-depolymerization and cell cycle arrest.  相似文献   

7.
Zika virus (ZIKV) infection has been associated with Guillain-Barre syndrome in adults and microcephaly in infants. The existence of insufficient structural data in most of the protein databases hinders the synthesis of anti-ZIKV pharmaceutics. In this work, we attempted to model the catalytic domain of the ZIKV RNA polymerase (RdRpC) along with a detailed assessment of conserved aspartates in ZIKV RdRpC palm domain as potential drug targets. The conserved and catalytically active aspartate residues present in the predicted RdRpC protein were virtually screened against a ZINC database for inhibitors, and the selected potential drug candidates were further filtered based on their ADMET profiles. One of the pharmacokinetically active compounds (Ligand 6) showed a remarkable docking profile against the strictly conserved aspartate residues of the RdRpC active site. We hypothesize that the Ligand 6 may form a potential drug candidate for RdRpC inhibition in the clinical treatment of ZIKV infection.  相似文献   

8.
B-Raf kinase has been identified as an important target in recent cancer treatment. In order to discover structurally diverse and novel B-Raf inhibitors (BRIs), a virtual screening of BRIs against ZINC database was performed by using a combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy (ΔGbind) calculation studies in this work. After the virtual screening, six promising hit compounds were obtained, which were then tested for inhibitory activities of A375 cell lines. In the result, five hit compounds show good biological activities (IC50 < 50 μM). The present method of virtual screening can be applied to find structurally diverse inhibitors, and the obtained five structurally diverse compounds are expected to develop novel BRIs.  相似文献   

9.
Mitotic Kinesin motors, Eg5 and Kif15, have recently emerged as good targets for cancer as they play an inevitable role during mitosis. But, most of the Eg5 inhibitors were found ineffective when the cancer cells develop resistance to them by escalating the expression of Kif15 as alternative to Eg5. Therefore, the drugs that target Kif15 became necessary to be used either as a single or in combination with Eg5 inhibitors. The present study used 39 dihydropyrazole and 13 dihydropyrrole derivatives that were having in vitro inhibitory potential against kinesin motors to develop a common pharmacophore hypothesis AHRR and atom-based QSAR model. The model was used for virtual screening of ZINC database and the resultant hits were docked against Kif15. The four drug candidates with high docking score were examined for their activity and pharmacokinetic behaviour. Based on the results these drugs could be considered as lead candidates in further drug development for cancer.  相似文献   

10.
Renin is an aspartyl protease of the renin–angiotensin system (RAS) and the first enzyme of the biochemical pathway for the generation of angiotensin II – a potent vasoconstrictor involved in the maintenance of cardiovascular homeostasis and the regulation of blood pressure. High enzymatic specificity of renin and its involvement in the catalysis of the rate-limiting step of the RAS hormone system qualify it as a good target for inhibition of hypertension and other associated diseases. Ligand-based pharmacophore model (Hypo1) was generated from a training set of 24 compounds with renin inhibitory activity. The best hypothesis consisted of one Hydrogen Bond Acceptor (HBA), three Hydrophobic Aliphatic (HY-Al) and one Ring Aromatic (AR) features. This well-validated pharmacophore hypothesis (correlation coefficient 0.95) was further utilized as a 3D query to screen database compounds, which included structures from two natural product repositories. These screened compounds were further analyzed for drug-likeness and ADMET studies. The compounds which satisfied the qualifying criteria were then subjected to molecular docking and Density Functional Theory (DFT) analysis in order to discern their atomic level interactions at the active site of the 3D structure of rennin. The pharmacophore-based modelling that has been used to generate the novel findings of the present study would be an avant-garde approach towards the development of potent inhibitors of renin.  相似文献   

11.
In the present article, a dataset of 63 quinoxaline derivatives were taken for antimalarial activity and pharmacophore were developed. Atom based method was used to develop a three dimensional quantitative structure activity relationship (3D-QSAR) model. On comparison of all statistical parameters, model AHRRR23 was found to be the most effective and predictive QSAR model as it satisfied all statistical parameters of a good model. The model AHRRR23 showed an adequate R2 value for the training set 0.9446, good predictive power with Q2 of 0.6409, good F- value, low SD 0.1218 value and outstanding Pearson-R values and low RMSE 0.2779 values of the model. The docking studies also gives very good results with good RMSD values. 3D QSAR, docking and ADME studies exhibits that the developed model could be employed as a potential lead for further study as antimalarial drug.  相似文献   

12.
A novel software (VSDMIP) for the virtual screening (VS) of chemical libraries integrated within a MySQL relational database is presented. Two main features make VSDMIP clearly distinguishable from other existing computational tools: (i) its database, which stores not only ligand information but also the results from every step in the VS process, and (ii) its modular and pluggable architecture, which allows customization of the VS stages (such as the programs used for conformer generation or docking), through the definition of a detailed workflow employing user-configurable XML files. VSDMIP, therefore, facilitates the storage and retrieval of VS results, easily adapts to the specific requirements of each method and tool used in the experiments, and allows the comparison of different VS methodologies. To validate the usefulness of VSDMIP as an automated tool for carrying out VS several experiments were run on six protein targets (acetylcholinesterase, cyclin-dependent kinase 2, coagulation factor Xa, estrogen receptor alpha, p38 MAP kinase, and neuraminidase) using nine binary (actives/inactive) test sets. The performance of several VS configurations was evaluated by means of enrichment factors and receiver operating characteristic plots. ángel R. Ortiz deceased on May 5, 2008.  相似文献   

13.
14.
Glyoxalase system is an ubiquitous system in human cells which has been examined thoroughly for its role in different diseases. It comprises two enzymes; Glyoxalase I (Glo-I) and Glyoxalase II (Glo-II) which perform detoxifying endogenous harmful metabolites, mainly methylglyoxal (MG) into non-toxic bystanders. In silico computer Aided Drug Design approaches were used and ninety two diverse pharmacophore models were generated from eighteen Glyoxalase I crystallographic complexes. Subsequent QSAR modeling followed by ROC evaluation identified a single pharmacophore model which was able to predict the expected Glyoxalase I inhibition. Screening of the National Cancer Institute (NCI) database using the optimal pharmacophore Hypo(3VW9) identified several promising hits. Thirty eight hits were successfully predicted then ordered and evaluated in vitro. Seven hits out of the thirty eight tested compounds showed more than 50% inhibition with low micromolar IC50.  相似文献   

15.
Polyphenol oxidases (PPOs)/tyrosinases are metal-dependent enzymes and known as important targets for melanogenesis. Although considerable attempts have been conducted to control the melanin-associated diseases by using various inhibitors. However, the exploration of the best anti-melanin inhibitor without side effect still remains a challenge in drug discovery. In present study, protein structure prediction, ligand-based pharmacophore modeling, virtual screening, molecular docking and dynamic simulation study were used to screen the strong novel inhibitor to cure melanogenesis. The 3D structures of PPO1 and PPO2 were built through homology modeling, while the 3D crystal structures of PPO3 and PPO4 were retrieved from PDB. Pharmacophore modeling was performed using LigandScout 3.1 software and top five models were selected to screen the libraries (2601 of Aurora and 727, 842 of ZINC). Top 10 hit compounds (C1-10) were short-listed having strong binding affinities for PPO1-4. Drug and synthetic accessibility (SA) scores along with absorption, distribution, metabolism, excretion and toxicity (ADMET) assessment were employed to scrutinize the best lead hit. C4 (name) hit showed the best predicted SA score (5.75), ADMET properties and drug-likeness behavior among the short-listed compounds. Furthermore, docking simulations were performed to check the binding affinity of C1-C10 compounds against target proteins (PPOs). The binding affinity values of complex between C4 and PPOs were higher than those of other complexes (−11.70, −12.1, −9.90 and −11.20 kcal/mol with PPO1, PPO2, PPO3, or PPO4, respectively). From comparative docking energy and binding analyses, PPO2 may be considered as better target for melanogenesis than others. The potential binding modes of C4, C8 and C10 against PPO2 were explored using molecular dynamics simulations. The root mean square deviation and fluctuation (RMSD/RMSF) graphs results depict the significance of C4 over the other compounds. Overall, bioactivity and ligand efficiency profiles suggested that the proposed hit may be more effective inhibitors for melanogenesis.  相似文献   

16.
In recent years, the level of interest has been increased in developing the DNA-repair inhibitors, to enhance the cytotoxic effects in the treatment of cancers. Polynucleotide kinase/phosphatase (PNKP) is a critical human DNA repair enzyme that repairs DNA strand breaks by catalyzing the restoration of 5’-phosphate and 3’-hydroxyl termini that are required for subsequent processing by DNA ligases and polymerases. PNKP is the only protein that repairs the 3′-hydroxyl group and 5′-phosphate group, which depicts PNKP as a potential therapeutic target. Besides, PNKP is the only DNA-repair enzyme that contains the 5′-kinase activity, therefore, targeting this kinase domain would motivate the development of novel PNKP-specific inhibitors. However, there are neither crystal structures of human PNKP nor the kinase inhibitors reported so far. Thus, in this present study, a sequential molecular docking-based virtual screening with multiple PNKP conformations integrating homology modeling, molecular dynamics simulation, and binding free energy calculation was developed to discover novel PNKP kinase inhibitors, and the top-scored molecule was finally submitted to molecular dynamics simulation to reveal the binding mechanism between the inhibitor and PNKP. Taken together, the current study could provide some guidance for the molecular docking based-virtual screening of novel PNKP kinase inhibitors.  相似文献   

17.
基于药效团模型的DHODH抑制剂构效关系研究   总被引:1,自引:0,他引:1  
利用药效团模型研究二氢乳清酸脱氢酶(Dihydroorotate dehydrogenase,DHODH)抑制剂的构效关系,为DHODH抑制剂的虚拟筛选提供新的方法.以31个具有DHODH抑制活性的化合物为训练集化合物,半数抑制浓度(IC50)范围为7~63000 nmol/L,利用Catalyst/HypoGen算法构建DHODH抑制剂药效团模型,通过对训练集化合物多个构象进行叠合,提取药效团特征及三维空间限制构建药效团模型.利用基于CatScramble的交叉验证方法及评价模型对已知活性化合物的活性预测能力,确定较优药效团模型.模型包含1个氢键受体、3个疏水中心,表征了受体配体相互作用时可能发生的氢键相互作用、疏水相互作用和π-π相互作用,4个药效特征在三维空间的排列概括了DHODH抑制剂产生活性的结构特点.所得较优模型对训练集化合物及测试集化合物的计算活性值与实验活性值的相关系数分别为0.8405和0.8788.利用药效团模型对来源于微生物的系列化合物进行虚拟筛选,筛选出59个预测活性较好的化合物,可作为进一步药物研发的候选化合物.  相似文献   

18.
Computational methods for docking ligands to protein binding sites have become ubiquitous in drug discovery. Despite the age of the field, no standards have been established with respect to methodological evaluation of docking accuracy, virtual screening utility, or scoring accuracy. There are critical issues relating to data sharing, data set design and preparation, and statistical reporting that have an impact on the degree to which a report will translate into real-world performance. These issues also have an impact on whether there is a transparent relationship between methodological changes and reported performance improvements. This paper presents detailed examples of pitfalls in each area and makes recommendations as to best practices.  相似文献   

19.
An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.  相似文献   

20.
Type 2 diabetes mellitus (T2DM) is one of the most widely prevalent metabolic disorders with no cure to date thus remains the most challenging task in the current drug discovery. Therefore, the only strategy to control diabetes prevalence is to develop novel efficacious therapeutics. Dipeptidyl Peptidase 4 (DPP-4) inhibitors are currently used as anti-diabetic drugs for the inhibition of incretins. This study aims to construct the chemical feature based on pharmacophore models for dipeptidyl peptidase IV. The structure-based pharmacophore modeling has been employed to evaluate new inhibitors of DPP-4. A four-featured pharmacophore model was developed from crystal structure of DPP-4 enzyme with 4-(2-aminoethyl) benzenesulfonyl fluoride in its active site via pharmacophore constructing tool of Molecular Operating Environment (MOE) consisting F1 Hyd (hydrophobic region), F2 Hyd|Cat|Don (hydrophobic cationic and donor region), F3 Acc (acceptor region) and F4 Hyd (hydrophobic region). The generated pharmacophore model was used for virtual screening of in-house compound library (the available compounds which were used for initial screening to get the few compounds for the current studies). The resultant selected compounds, after virtual screening were further validated using in vitro assay. Furthermore, structure-activity relationship was carried out for the compounds possessing significant inhibition potential after docking studies. The binding free energy of analogs was evaluated via molecular mechanics generalized Born surface area (MM-GBSA) and Poisson-Boltzmann surface area (MM-PBSA) methods using AMBER 16 as a molecular dynamics (MD) simulation package. Based on potential findings, we report that selected candidates are more likely to be used as DPP-4 inhibitors or as starting leads for the development of novel and potent DPP-4 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号