首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 854 毫秒
1.
荧光碳点探针是近几年来发展起来的一种新型荧光探针,具有传统有机染料、荧光染色蛋白及一般荧光纳米材料无法比拟的独特优势,如具有良好的水溶性、化学惰性、低毒性、易于功能化、抗光漂白性、可调谐和生物相容性等优异性能,因而引起研究者的广泛关注。目前已发展水热法等近十种较为经济便捷的方法,可进行大规模的荧光碳点制备,在细胞功能研究及细胞表面和内部功能分子的探测、组织的成像、病菌的定位等方面得到了较为广泛的应用。笔者对近年来荧光碳点的合成方法、依赖于碳点尺寸和波长等性质的发光性能,以及荧光碳点在生物成像等方面的应用作一简要综述,并对其在药用植物病理方面的应用提出展望,期望为丰富荧光碳点在生物成像领域的应用提供一定的借鉴和参考。  相似文献   

2.
The development of magnetic nanoparticles with multiple functions has been an ever‐growing field because of their diverse applications in drug delivery, biosensing, cell labeling, and so on. In this study, a facile method was developed to construct multifunctional magnetic nanocomposites. The approach is based on the use of poly(glycidyl methacrylate), PGMA, with numerous epoxy groups as reactive polymer to combine with fluorescent dye, the surface of magnetic nanoparticles, and targeting ligands directly without expatiatory functionality design. The resultant nanocomposites with good superparamagnetic and fluorescent properties could be exploited for bioimaging. Moreover, after conjugation with a model protein, namely, transferrin, which specifically targets cells overexpressing transferrin receptors, the nanocomposites could be used selectively to recognize Hela cells in comparison with nonconjugated ones. These results indicate that the newly designed magnetic nanocomposites with PGMA as functional polymer could serve as a novel versatile platform to conjugate with various molecules for construction of diverse multifunctional magnetic nanocomposites to meet different requirements and potential uses in nanomedicine and biological chemistry.  相似文献   

3.
Coupling the genetic code expansion technique with bioorthogonal reactions enables precise control over the conjugation site as well as the choice of fluorescent probes during protein labeling. However, the advantages of this strategy over bulky and rigid fluorescent proteins (FPs) remain to be fully explored. Here we applied site‐specific bioorthogonal labeling on anthrax lethal factor (LF) to visualize its membrane translocation inside live cells. In contrast to the previously reported FP tags that significantly perturbed LF’s membrane trafficking, our precisely and quantitatively labeled LF exhibited an endocytic activity comparable to wild‐type LF. This allowed time‐lapse imaging of LF’s natural translocation process from host cell membrane to cytosol, which revealed molecular details of its virulence mechanism. Our strategy is generally applicable for monitoring intracellular protein membrane translocation that is difficult to access using conventional protein labeling methodologies.  相似文献   

4.
The advancement of fluorescence microscopy techniques has opened up new opportunities for visualizing proteins and unraveling their functions in living biological systems. Small-molecule organic dyes, which possess exceptional photophysical properties, small size, and high photostability, serve as powerful fluorescent reporters in protein imaging. However, achieving high-contrast live-cell labeling of target proteins with conventional organic dyes remains a considerable challenge in bioimaging and biosensing due to their inadequate cell permeability and high background signal. Over the past decade, a novel generation of fluorogenic and cell-permeable dyes has been developed, which have substantially improved live-cell protein labeling by fine-tuning the reversible equilibrium between a cell-permeable, nonfluorescent spirocyclic state (unbound) and a fluorescent zwitterion (protein-bound) of rhodamines. In this review, we present the mechanism and design strategies of these fluorogenic and cell-permeable rhodamines, as well as their applications in bioimaging and biosensing.  相似文献   

5.
Western blot (protein immunoblot) is a widely used analytical technique in molecular biology. Utilizing the specific recognizing primary antibody, proteins immobilized on various matrix are investigated by subsequent visualization steps, for example, by the horse radish peroxidase conjugated secondary antibody incubation. Methods to improve the sensitivity in protein identification or quantification are appreciated by biochemists. Herein, we report a new strategy to amplify Western blot signals by constructing a probe with proximal labeling and IgG targeting abilities. The R118G mutation attenuated the biotin-AMP binding affinity of the bacterial biotin ligase BirA*, offering a proximity-dependent labeling ability, which could be used as a signal amplifier. We built a BirA*-protein A fusion protein (BioEnhancer) that specifically binds to IgG and adds biotin tags to its proximal amine groups, enhancing the immunosignal of target proteins. In our experiments, the BioEnhancer system amplified the immunosignal by tenfold compared to the standard western blot. Additionally, our strategy could couple with other signal enhancement methods to further increase the western blot sensitivity.  相似文献   

6.
The outstanding optical properties and biocompatibility of fluorescent conjugated polymer nanoparticles (CPNs) make them favorable for bioimaging application. However, few CPNs could achieve stable cell membrane labeling due to cell endocytosis. In this work, conjugated polymer nanoparticles (PFPNP‐PLE) encapsulated with PFP and PLGA‐PEG‐N3 in the matrix and functionalized with the small‐molecule drug plerixafor (PLE) on the surface were prepared by a mini‐emulsion method. PFPNP‐PLE exhibits excellent photophysical properties, low cytotoxicity, and specific cytomembrane location, which makes it a potential cell membrane labeling reagent with blue fluorescence emission, an important component for multilabel/multicolor bioimaging.  相似文献   

7.
Aromatic heterocyclic compounds have received a lot of interest due to their various important medicinal and biological applications. The broad synthetic investigation and functional usefulness of heterocyclic molecules is driving a surge in research interest. They are found in more than 90% of innovative medications and bridge the gap between biology and chemistry, where so much scientific discovery and application happens. Heterocycles are also useful in a variety of domains, including pharmaceutical chemistry, biochemistry, and others. In this article, quantitative structure-property relationship (QSPR) models is developed using sombor indices to predict fluorescence properties of aromatic hetero-cyclic species based on their structural features. This allows researchers to estimate the fluorescence behavior of new molecules without performing experimental measurements. As an application, we have computed the sombor indices for self-assembled supramolecular graphs made of terpyridine (TPE) and tetraphenylethylene (TPY) molecules that are produced as rosette cycles. This form of rosettes graph is used in electrical sensors, light emitting diodes, bioimaging and photoelectric devices, and so on. Tetraphenylethylene can be used to make fluorescent probes for next-generation sensing applications with typical induced aggregative emission behavior.  相似文献   

8.
A new fluorescent indolizine-based scaffold was developed using a straightforward synthetic scheme starting from a pyrrole ring. In this fluorescent system, an N,N-dimethylamino group in the aryl ring at the C-3 position of indolizine acted as an electron donor and played a crucial role in inducing a red shift in the emission wavelength based on the ICT process. Moreover, various electron-withdrawing groups, such as acetyl and aldehyde, were introduced at the C-7 position of indolizine, to tune and promote the red shift of the emission wavelength, resulting in a color range from blue to orange (462–580 nm). Furthermore, the ICT effect in indolizine fluorophores allowed the design and development of new fluorescent pH sensors of great potential in the field of fluorescence bioimaging and sensors.  相似文献   

9.
Fluorescent graphene-based materials, labelled as a sort of fluorescent carbon-based nanomaterial, have drawn increasing attention in recent years. When the size and structure of graphene were controlled properly, photoluminescence was induced in graphene, resulting in the so-called fluorescent graphene (FG). FG has a size-, defect-, and wavelength-dependent luminescence emission, which is similar to traditional semiconductor-based quantum dots. Moreover, with excellent chemical stability, fine biocompatibility, low toxicity, up-conversion emission, pH-sensitivity and resistance to photobleaching, FG promises to offer substantial applications in numerous areas: bioimaging, photovoltaics, sensors, etc. Currently, research works have allowed FG to be produced by many approaches ranging from simple oxidation of graphene to cutting carbon sources and organic synthesis from small molecules. In this Feature Article, we summarize the reported fluorescent graphenes, with emphasis on their category, properties, synthesis and applications. Meanwhile, we give a perspective on their subsequent developments and compare the features of FG and other fluorescent carbon-based materials.  相似文献   

10.
In recent years, fluorescent assemblies based amphiphilic molecules have gained attention as unique and powerful materials for multiple applications that cover sensors, optoelectronics and bioimaging because of amphiphilic molecules self-assembly with outstanding flexibility and diversity spanning assembly structure from micelles, vesicles and nano-assemblies to gels. Weak and noncovalent interactions are important driving force for assemblies. The combination of the structural characteristics of self-assembly and the fluorescent properties of the fluorescent building element render the fluorescent material versatility and their easy-to-tune properties. Amphiphilic molecules can be used as building elements to co-assemble with dye molecules, aggregation-induced emission (AIE) gens, fluorescent nanoparticles and new amphiphilic molecules containing fluorescent groups can also be designed and prepared with self-assembly capability. Concomitantly, the improvement of fluorescence performance including fluorescence intensity, quantum yield, stability and controllability during assembly proved outstanding properties of fluorescence assemblies. These promising fluorescent assemblies are by far not exhaustive in construction method and mechanism explanation but foreshadow their more potential applications. Here, we will understand deeper the fluorescent assemblies and inspire future developments and applications employing this emerging fluorescence soft materials.  相似文献   

11.
Labeling of bioactive small molecules with organic dyes for various applications in cell biology has been emerging as an attractive research field. Using an easily prepared and inexpensive fluorescein derivative 1 and a Cu(I)-catalyzed Huisgen reaction, an efficient fluorescent labeling strategy is developed generally for bioactive natural products. Essentials of a successful labeling include the personalized introduction of an azido functionality to specific targets by a selective and efficient manner, and the strategic adjustment of reaction sequence to avoid possible side reactions under the ‘click’ reaction conditions. Such a protocol has been successfully applied to the fluorescent labeling of four bioactive small molecules in different chemical categories in this study. Advantages of this labeling protocol include the use of inexpensive reagents, ease of operation, free-of-protections at the ‘click’ step, and suiting a wide range of bioactive molecules bearing the reactive functionalities.  相似文献   

12.
Cell‐derived microparticles (MPs) have been recently recognized as critical intercellular information conveyors. However, further understanding of their biological behavior and potential application has been hampered by the limitations of current labeling techniques. Herein, a universal donor‐cell‐assisted membrane biotinylation strategy was proposed for labeling MPs by skillfully utilizing the natural membrane phospholipid exchange of their donor cells. This innovative strategy conveniently led to specific, efficient, reproducible, and biocompatible quantum dot (QD) labeling of MPs, thereby reliably conferring valuable traceability on MPs. By further loading with small interference RNA, QD‐labeled MPs that had inherent cell‐targeting and biomolecule‐conveying ability were successfully employed for combined bioimaging and tumor‐targeted therapy. This study provides the first reliable and biofriendly strategy for transforming biogenic MPs into functionalized nanovectors.  相似文献   

13.
Here we develop Lateral Flow Assays (LFAs) that employ as functional elements DNA-based structures decorated with reporter tags and recognition elements. We have rationally re-engineered tile-based DNA tubular structures that can act as scaffolds and can be decorated with recognition elements of different nature (i.e. antigens, aptamers or proteins) and with orthogonal fluorescent dyes. As a proof-of-principle we have developed sandwich and competitive multiplex lateral flow platforms for the detection of several targets, ranging from small molecules (digoxigenin, Dig and dinitrophenol, DNP), to antibodies (Anti-Dig, Anti-DNP and Anti-MUC1/EGFR bispecific antibodies) and proteins (thrombin). Coupling the advantages of functional DNA-based scaffolds together with the simplicity of LFAs, our approach offers the opportunity to detect a wide range of targets with nanomolar sensitivity and high specificity.  相似文献   

14.
聚集诱导发光(AIE)现象的发现为解决传统有机荧光分子在高浓度和聚集形态下存在的荧光猝灭问题提供了最佳方案,并实现了在光电器件、化学传感、生物成像和靶向治疗等众多领域的广泛应用.随着对AIE 发光机理研究的不断深入,AIE 分子体系得到了极大的扩展.其中,一类具有给体-受体结构的AIE分子能够显著降低分子能隙,使发光分...  相似文献   

15.
Fluorescent probes play a key role in modern biomedical research. As compared to inorganic quantum dots (QDs) composed with heavy metal elements, organic dye-based fluorescent nanoparticles have higher biocompatibility and are richer in variety. However, traditional organic fluorophores tend to quench fluorescence upon aggregation, which is known as aggregation-caused quenching (ACQ) effect that hinders the fabrication of highly emissive fluorescent nanoparticles. In this work, we demonstrate the synthesis of organic fluorescent dots with aggregation-induced emission (AIE) in far-red/near-infrared (FA/NIR) region. A conventional ACQ-characteristic fluorescent dye, 3,4:9,10-tetracarboxylic perylene bisimide (PBI), is converted into an AIE fluorogen through attaching two tetraphenylethylene (TPE) moieties. The fluorescent dots with surface folic acid groups are fabricated from PBI derivative (DTPEPBI), showing specific targeting effect to folate receptor-overexpressed cancer cells. In vivo studies also suggest that the folic acid-functionalized AIE dots preferentially accumulate in the tumor site through enhanced permeability and retention (EPR) effect and folate receptor-mediated active targeting effect. The low cyto-toxicity, good FR/NIR contrast and excellent targeting ability in in vitro/in vivo imaging indicate that the AIE dots have great potentials in advanced bioimaging applications.  相似文献   

16.
设计合成融合表达标签谷胱甘肽S-转移酶(GST)的二价亲和标记试剂,用于功能化磁珠后位点选择性固定化标签GST,为磁分离筛选配体混合物库提供固定化融合靶蛋白的候选方案。 为减少疏水配体在标签GST活性位点的结合,需同时占据标签GST双活性中心内疏水结合位点并发生共价修饰的二价亲和标记试剂。以双苯环为疏水定位基、溴乙酰基为巯基修饰基团、羧基为连接官能团得单价标记试剂,以二乙基三胺为连接臂将单价标记试剂与连接臂两端伯胺连接得标签GST的对称二价亲和标记试剂,再以线性三胺连接臂中间的氨基与羧基磁珠偶联得功能化磁珠。 表征目标化合物对标签GST的标记动力学、结合比;功能化磁珠对标签GST的不可逆固定化动力学和固载容量,及将磁珠表面二价亲和标记试剂转变成还原型谷胱甘肽(GSH)加合物后对标签GST可逆固定化的效果;以碱性磷酸酶及疏水荧光配体为模型考察磁珠固定化标签GST后的非特异结合。 目标化合物对标签GST半抑制浓度为(22±0.2) μmol/L,其与GSH的饱和加合物半抑制浓度为(0.41±0.06) μmol/L,二者与标签GST二聚体结合比接近1:1。 功能化磁珠对标签GST不可逆及可逆固定化的容量均接近25 mg/g磁珠。 偶联GST的磁珠对蛋白非特异吸附很弱,再进一步用单价亲和标记试剂和GSH加合物封闭固定化标签GST剩余的活性位点后对疏水小分子也无显著结合。 结果表明,所设计二价亲和标记试剂功能化磁珠适合用于标签GST及其融合表达蛋白的位点选择性固定化。  相似文献   

17.
多肽基金属离子传感器作为一种基于多肽序列而设计的新型传感器,越来越受到研究者的关注.多肽作为一类重要的生物小分子,具有合成方法成熟、简便、成本低,且能够以多齿配位状态与金属离子结合等优点.多肽基传感器对金属离子具有高灵敏性和高选择性,且可以通过调节多肽序列进一步优化.与其他类型传感器相比,多肽基金属离子传感器具有良好的...  相似文献   

18.
Fluorescence imaging in clinical diagnostics and biomedical research relies to a great extent on the use of small organic fluorescent probes. Because of the difficulty of combining fluorescent and molecular-recognition properties, the development of such probes has been severely restricted to a number of well-known fluorescent scaffolds. Here we demonstrate that autofluorescing druglike molecules are a valuable source of bioimaging probes. Combinatorial synthesis and screening of chemical libraries in droplet microarrays allowed the identification of new types of fluorophores. Their concise and clean assembly by a multicomponent reaction presents a unique potential for the one-step synthesis of thousands of structurally diverse fluorescent molecules. Because they are based upon a druglike scaffold, these fluorophores retain their molecular recognition potential and can be used to design specific imaging probes.  相似文献   

19.
Ma Q  Su X 《The Analyst》2011,136(23):4883-4893
As a unique nanomaterial, quantum dots (QDs) are not only applied in fluorescent labeling and biological imaging, but are also utilized in novel sensing systems. Because QDs have attractive optoelectronic characteristics, QD-based sensors present high sensitivity in detecting specific analytes in the chemical and biochemical fields. In this review, we describe the basic principles and different conjugation strategies in QD-based sensors. An overview of recent advances and various models of QD-sensing systems is also provided. Furthermore, perspectives for sensors based on QDs are discussed.  相似文献   

20.
In vitro selected ribozymes are promising tools for site‐specific labeling of RNA. Previously known nucleic acid catalysts attached fluorescently labeled adenosine or guanosine derivatives through 2′,5′‐branched phosphodiester bonds to the RNA of interest. Herein, we report new ribozymes that use orthogonal substrates, derived from the antiviral drug tenofovir, and attach bioorthogonal functional groups, as well as affinity handles and fluorescent reporter units through a hydrolytically more stable phosphonate ester linkage. The tenofovir transferase ribozymes were identified by in vitro selection and are orthogonal to nucleotide transferase ribozymes. As genetically encodable functional RNAs, these ribozymes may be developed for potential cellular applications. The orthogonal ribozymes addressed desired target sites in large RNAs in vitro, as shown by fluorescent labeling of E. coli 16S and 23S rRNAs in total cellular RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号