首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
In this article, we establish sufficient conditions for the regularity of solutions of Navier–Stokes equations based on one of the nine entries of the gradient tensor. We improve the recent results of C.S. Cao, E.S. Titi [C.S. Cao, E.S. Titi, Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal. 202 (2011) 919–932] and Y. Zhou, M. Pokorný [Y. Zhou, M. Pokorný, On the regularity of the solutions of the Navier–Stokes equations via one velocity component, Nonlinearity 23 (2010) 1097–1107].  相似文献   

7.
In this paper we show that a Leray–Hopf weak solution u to 3D Navier–Stokes initial value problem is smooth if there is some \(\alpha \in {{{\mathbb {R}}}}, \alpha \ne 0,\) such that \(\alpha u_3+(-\Delta )^{-1/2}\omega _3\) is suitably smooth, where \(\omega =\text {curl}\,u\).  相似文献   

8.
9.
Lithuanian Mathematical Journal - We study the local regularity of solutions to the Navier–Stokes equations. We show for a suitable weak solution (u, p) on an open space-time domain D that if...  相似文献   

10.
11.
12.
In this paper we prove the existence of insensitizing controls, having one vanishing component, for the local L2L2-norm of the solutions of the Navier–Stokes system. This problem can be recast as a null controllability problem for a nonlinear cascade system. We first prove a controllability result, with controls having one vanishing component, for a linear problem. Then, by means of an inverse mapping theorem, we deduce the controllability for the cascade system.  相似文献   

13.
In this article we prove a logarithmic improvement of regularity criteria in the multiplier spaces for the Cauchy problem of the incompressible Navier–Stokes equations in terms of pressure. This improves the main result in Benbernou (2009).  相似文献   

14.
We prove that a weak solution u = (u 1, u 2, u 3) to the Navier–Stokes equations is strong, if any two components of u satisfy Prodi–Ohyama–Serrin's criterion. As a local regularity criterion, we prove u is bounded locally if any two components of the velocity lie in L 6, ∞.  相似文献   

15.
Let u be a weak solution of the Navier–Stokes equations in an exterior domain ${\Omega \subset \mathbb{R}^3}Let u be a weak solution of the Navier–Stokes equations in an exterior domain W ì \mathbbR3{\Omega \subset \mathbb{R}^3} and a time interval [0, T[ , 0 < T ≤ ∞, with initial value u 0, external force f = div F, and satisfying the strong energy inequality. It is well known that global regularity for u is an unsolved problem unless we state additional conditions on the data u 0 and f or on the solution u itself such as Serrin’s condition || u ||Ls(0,T; Lq(W)) < ¥{\| u \|_{L^s(0,T; L^q(\Omega))} < \infty} with 2 < s < ¥, \frac2s + \frac3q = 1{2 < s < \infty, \frac{2}{s} + \frac{3}{q} =1}. In this paper, we generalize results on local in time regularity for bounded domains, see Farwig et al. (Indiana Univ Math J 56:2111–2131, 2007; J Math Fluid Mech 11:1–14, 2008; Banach Center Publ 81:175–184, 2008), to exterior domains. If e.g. u fulfills Serrin’s condition in a left-side neighborhood of t or if the norm || u ||Ls(t-d,t; Lq(W)){\| u \|_{L^{s'}(t-\delta,t; L^q(\Omega))}} converges to 0 sufficiently fast as δ → 0 + , where ${\frac{2}{s'} + \frac{3}{q} > 1}${\frac{2}{s'} + \frac{3}{q} > 1}, then u is regular at t. The same conclusion holds when the kinetic energy \frac12|| u(t) ||22{\frac{1}{2}\| u(t) \|_2^2} is locally H?lder continuous with exponent ${\alpha > \frac{1}{2}}${\alpha > \frac{1}{2}}.  相似文献   

16.
17.
《偏微分方程通讯》2013,38(7-8):955-987
Abstract

We study boundary regularity of weak solutions of the Navier–Stokes equations in the half-space in dimension n ≥ 3. We prove that a weak solution u which is locally in the class L p, q with 2/p + n/q = 1, q > n near boundary is Hölder continuous up to the boundary. Our main tool is a pointwise estimate for the fundamental solution of the Stokes system, which is of independent interest.  相似文献   

18.
19.
The velocity–vorticity formulation of the 3D Navier–Stokes equations was recently found to give excellent numerical results for flows with strong rotation. In this work, we propose a new regularization of the 3D Navier–Stokes equations, which we call the 3D velocity–vorticity-Voigt (VVV) model, with a Voigt regularization term added to momentum equation in velocity–vorticity form, but with no regularizing term in the vorticity equation. We prove global well-posedness and regularity of this model under periodic boundary conditions. We prove convergence of the model's velocity and vorticity to their counterparts in the 3D Navier–Stokes equations as the Voigt modeling parameter tends to zero. We prove that the curl of the model's velocity converges to the model vorticity (which is solved for directly), as the Voigt modeling parameter tends to zero. Finally, we provide a criterion for finite-time blow-up of the 3D Navier–Stokes equations based on this inviscid regularization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号