首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
By using the first-principles calculation based on density functional theory, we investigate the electronic structures and transport properties of the defected and doped zigzag graphene nanoribbons (ZGNRs). The effects of multivacancies defects and impurities have been considered. The results show that band structures of ZGNRs can be tuned strongly and currents drop drastically due to the defect and impurities. Moreover, the notable suppression of conductance can be found near the Fermi level, leading to the negative differential resistance (NDR) behavior under low bias. This effect presents a possibility in novel nanoelectronics devices application.  相似文献   

2.
嵌入线型缺陷的石墨纳米带的热输运性质   总被引:1,自引:0,他引:1       下载免费PDF全文
姚海峰  谢月娥  欧阳滔  陈元平 《物理学报》2013,62(6):68102-068102
采用非平衡格林函数方法研究了嵌入有限长、半无限长、 无限长线型缺陷的锯齿型石墨纳米带 (ZGNR)的热输运性质.结果表明, 缺陷类型和缺陷长度对ZGNR的热导有重要影响. 当嵌入的线型缺陷长度相同时, 包含t5t7线型缺陷的石墨纳米带比包含Stone-Wales线型缺陷的条带热导低. 对于嵌入有限长、同种缺陷的ZGNR, 其热导随线型缺陷的长度增加而降低, 但是当线型缺陷很长时, 其热导对缺陷长度的变化不再敏感.通过比较嵌入有限长、半无限长、无限长线型缺陷的ZGNR, 我们发现嵌入无限长缺陷的条带比嵌入半无限长缺陷的条带热导高, 而后者比嵌入有限长线型缺陷的条带热导高. 这主要是因为在这几种结构中声子传输方向的散射界面数不同所导致的. 散射界面越多, 对应的热导就越低. 通过分析透射曲线和声子局域态密度图, 解释了这些热输运现象. 这些研究结果表明线型缺陷能够有效地调控石墨纳米带的热输运性质. 关键词: 石墨烯 线型缺陷 热导  相似文献   

3.
Li Z  Qian H  Wu J  Gu BL  Duan W 《Physical review letters》2008,100(20):206802
The intrinsic transport properties of zigzag graphene nanoribbons (ZGNRs) are investigated using first-principles calculations. It is found that although all ZGNRs have similar metallic band structure, they show distinctly different transport behaviors under bias voltages, depending on whether they are mirror symmetric with respect to the midplane between two edges. Asymmetric ZGNRs behave as conventional conductors with linear current-voltage dependence, while symmetric ZGNRs exhibit unexpected very small currents with the presence of a conductance gap around the Fermi level. This difference is revealed to arise from different coupling between the conducting subbands around the Fermi level, which is dependent on the symmetry of the systems.  相似文献   

4.
Peng Lu 《Physics letters. A》2009,373(37):3354-3358
The electronic and magnetic properties of zigzag graphene nanoribbons (ZGNRs) with Stone-Wales defects are studied by extensive first-principles calculations. It is shown that the asymmetry distribution of the Stone-Wales defects can induce finite magnetic moment in the defective ZGNRs. As the defect near one of the ribbon edges moving to the centre region, the magnetic moment of the defective ZGNRs gradually decreases to zero, following a transition from metal to semi-half-metal and eventually to semiconductor. In addition, by symmetrically placing an additional defect at the opposite side of the defective ZGNRs, the finite magnetic moment vanishes, and the electronic properties depend on the distance between the defect and the closer ribbon edge. These findings are robust within a wide range of defect concentration.  相似文献   

5.
张嵛  刘连庆  焦念东  席宁  王越超  董再励 《物理学报》2012,61(13):137101-137101
采用基于密度泛函理论的非平衡格林函数, 对具有不同缺陷构型的锯齿型石墨烯带(zigzag graphene nanoribbon, ZGNR) 的输运性质进行了理论计算与模拟. 研究表明, 相同数目、 不同构型缺陷结构对ZGNR的导电特性将产生不同的影响. 如A-B构型双空缺对ZGNR电导的影响最为显著, 而A-A构型双空缺对其电导的影响最小. 更为重要的是, 当引入碳环构型缺陷时, ZGNR将被改性, 即由原本的金属性质转变为半导体性质, 为缺陷调控石墨烯导电特性提供了理论依据.  相似文献   

6.
双空位缺陷石墨纳米带的电子结构和输运性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
欧阳方平  徐慧  林峰 《物理学报》2009,58(6):4132-4136
基于第一原理电子结构和输运性质计算,研究了585双空位拓扑缺陷对锯齿(zigzag)型石墨纳米带(具有椅型(armchair)边)电子结构和输运性质的影响.研究发现,585双空位缺陷的存在使得锯齿型石墨纳米带的能隙增大,并在能隙中出现了一条局域于缺陷处的缺陷态能带,双空位缺陷的取向也影响其能带结构.另外,585双空位缺陷对能隙较小的锯齿型石墨纳米带输运性质的影响较大,而对能隙较大的锯齿型石墨纳米带影响很小,缺陷取向并不显著影响纳米带的输运性质. 关键词: 石墨纳米带 585空位缺陷 电子结构 输运性质  相似文献   

7.
We make use of first-principles calculations, based on the density functional theory(DFT), to investigate the alterations at the structural, energetic, electronic andmagnetic properties of graphene and zigzag graphene nanoribbons (ZGNRs) due to theinclusion of different types of line and punctual defects. For the graphene it is foundthat the inclusion of defects breaks the translational symmetry of the crystal withdrastic changes at its electronic structure, going from semimetallic to semiconductor andmetallic. Regarding the magnetic properties, no magnetization is observed for thedefective graphene. We also show that the inclusion of defects at ZGNRs is a good way tocreate and control pronounced peaks at the Fermi level. Furthermore, defective ZGNRsstructures show magnetic moment by supercell up to 2.0μB. For the non defectiveZGNRs is observed a switch of the magnetic coupling between opposite ribbon edges from theantiferromagnetic to the ferrimagnetic and ferromagnetic configurations.  相似文献   

8.
We investigate the coherent electronic transport properties of square-shaped zigzag graphene nanoconstrictions (ZGNC) under transverse strain using recursive Green’s function method. We find that the low-bias conductance of ZGNCs is monotonically dependent on the strain in contrast to that of zigzag graphene nanoribbons (ZGNRs), which is unaffected by strain. This result suggests that ZGNCs can be used as elementary building blocks in graphene nanomechanical system devices. In addition, a simplified analytical model is employed to qualitatively explain the strain tuning of the low-bias conductance of ZGNCs.  相似文献   

9.
First principles calculations have been performed to investigate the electronic structures and transport properties of defective graphene nanoribbons (GNRs) in the presence of pentagon-octagon-pentagon (5-8-5) defects. Electronic band structure results reveal that 5-8-5 defects in the defective zigzag graphene nanoribbon (ZGNR) is unfavorable for electronic transport. However, such defects in the defective armchair graphene nanoribbon (AGNR) give rise to smaller band gap than that in the pristine AGNR, and eventually results in semiconductor to metal-like transition. The distinct roles of 5-8-5 defects in two kinds of edged-GNR are attributed to the different coupling between π? and π subbands influenced by the defects. Our findings indicate the possibility of a new route to improve the electronic transport properties of graphene nanoribbons via tailoring the atomic structures by ion irradiation.  相似文献   

10.
We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.  相似文献   

11.
Using the first-principle calculations, we investigate the spin-dependent transport properties of Fe-substituted zigzag graphene nanoribbons (ZGNRs). The substituted ZGNRs with single or double Fe atoms, distributing symmetrically or asymmetrically on both edges, are considered. Our results show Fe-substitution can significantly change electronic transport of ZGNRs, and the spin-filter effect and negative differential resistance (NDR) can be observed. We propose that the distribution of the electronic spin-states of ZGNRs can be modulated by the substituted Fe and results in the spin-polarization, and meanwhile the change of the delocalization of the frontier molecular orbitals at different bias may be responsible for the NDR behavior.  相似文献   

12.
We study the nonlinearity for the zigzag graphene nanoribbons (ZGNRs) with zigzag triangular holes (ZTHs). We show that in the presence of an external uniform magnetic field, a two-dimensional f-deformed Dirac oscillator can be used to describe the dynamics of the electrons in the ZGNRs with ZTHs. It is shown for the first time that the magnetic field direction has effect on the chirality of charge carriers in the ZGNRs punched with triangular holes. We also obtain the Landau-level spectrum in the weak and strong magnetic field regimes. Additionally, we compare Landau-level spectrum of this graphene-based device in the f-deformed scenario and original one. Our results provide a general viewpoint for the development of the zigzag graphene nanoribbons.  相似文献   

13.
By applying nonequilibrium Green?s function formalism in combination with density functional theory, we have investigated the electronic transport properties of dehydrobenzoannulenne molecule attached to different positions of the zigzag graphene nanoribbons (ZGNRs) electrode. The different contact positions are found to drastically turn the transport properties of these systems. The negative differential resistance (NDR) effect can be found when the ZGNRs electrodes are mirror symmetry under the xz midplane, and the mechanism of NDR has been explained. Moreover, parity limitation tunneling effect can be found in a certain symmetry two-probe system and it can completely destroy electron tunneling process. The present findings might be useful for the application of ZGNRs-based molecular devices.  相似文献   

14.
魏晓林  陈元平  王如志  钟建新 《物理学报》2013,62(5):57101-057101
本文系统地研究了不同形状(三方、四方及六方) 的孔缺陷对锯齿形石墨烯纳米条带电学特性的影响. 结果表明: 孔缺陷形状对于石墨烯纳米条带的电导及电流特性影响显著, 其可能源于不同形状的孔缺陷边界对于电子散射的不同; 另外, 当缺陷悬挂吸附氢或氮原子, 将引起孔缺陷形状改变, 因此不同孔缺陷吸附对于石墨烯纳米条带的电学特性的影响也各不相同. 本研究将为石墨烯基电子器件失效分析及石墨烯孔结构器件设计提供有价值的理论指导. 关键词: 石墨烯 孔缺陷 电学特性  相似文献   

15.
We study the electron transport of nitrogen-vacancy zigzag graphene nanoribbons (ZGNRs) absorbing gas molecules. It is found that the nitrogen-vacancy ZGNRs are more sensitive to the gas molecules than the pristine ZGNRs. The gas molecules absorbed on the three-nitrogen vacancies lead to sharp resonant peaks on conductance, while those absorbed on the four-nitrogen vacancies lead to anti-resonant dips. Each kind of gas molecule can be detected by its own unique (different energy) resonant peaks (or dips). This indicates that the nitrogen vacancy can enhance the sensitivity to gas molecules, i.e., nitrogen-vacancy ZGNRs can serve as better gas sensors.  相似文献   

16.
《Physics letters. A》2014,378(7-8):667-671
Structure, electronic, and transport properties of sulfur dioxide (SO2) molecule adsorbed on pure and Cr doped zigzag graphene nanoribbons (ZGNRs) are investigated by means of first principle density functional theory and nonequilibrium Greenʼs function computations. It is found that Cr doped ZGNR is more sensitive to SO2 molecule than pure ZGNR. The pure ZGNRs with and without SO2 molecule show similar IV curves, but the current of Cr doped ZGNR will significant increase after SO2 molecule adsorption.  相似文献   

17.
Recent experimental characterizations have clearly visualized edge reconstructions in graphene nanoribbon and stable defective configurations. We have performed first principles calculations to evaluate the effects of atomic edge arrangement on the electronic transport properties of zigzag graphene nanoribbons (ZGNR). It is found that different conductance behaviors and variation of resonant energies are influenced by atomic reconstruction among three defective edge configurations. It is predicted that the conductance in edge reconstructed ZGNR is not a monotonic function of the increasing concentration of defects in size, but the topology and the distribution of defects should be taken into account. Our findings suggest that the ability of tuning the electronic transport of ZGNR could be improved through edge reconstruction activated by energetic particle irradiation.  相似文献   

18.
We apply the nonequilibrium Green's function method based on density functional theory to investigate the electronic and transport properties of waved zigzag and armchair graphene nanoribbons. Our calculations show that out-of-plane mechanical deformations have a strong influence on the band structures and transport characteristics of graphene nanoribbons. The computed I-V curves demonstrate that the electrical conductance of graphene nanoribbons is significantly affected by deformations. The relationship between the conductance and the compression ratio is found to be sensitive to the type of the nanoribbon. The results of our study indicate the possibility of mechanical control of the electronic and transport properties of graphene nanoribbons.  相似文献   

19.
邓小清  孙琳  李春先 《物理学报》2016,65(6):68503-068503
基于密度泛函理论第一原理系统研究了界面铁掺杂锯齿(zigzag)形石墨烯纳米带的自旋输运性能, 首先考虑了宽度为4的锯齿(zigzag)形石墨烯纳米带, 构件了4个纳米器件模型, 对应于中心散射区的长度分别为N=4, 6, 8和10个石墨烯单胞的长度, 铁掺杂在中心区和电极的界面. 发现在铁磁(FM)态, 四个器件的β自旋的电流远大于α自旋的电流, 产生了自旋过滤现象; 而界面铁掺杂的反铁磁态模型, 两种电流自旋都很小, 无法产生自旋过滤现象; 进一步考虑电极的反自旋构型, 器件电流显示出明显的自旋过滤效应. 探讨了带宽分别为5和6的纳米器件的自旋输运性能, 中心散射区的长度为N=6个石墨烯单胞的长度, FM 态下器件两种自旋方向的电流值也存在较大的差异, β自旋的电流远大于α自旋电流. 这些结果表明: 界面铁掺杂能有效调控锯齿形石墨烯纳米带的自旋电子, 对于设计和发展高极化自旋过滤器件有重要意义.  相似文献   

20.
Based on nonequilibrium Green's function in combination with density functional theory calculations, the spin-dependent electronic transport properties of one-dimensional zigzag molybdenum disulfide (MoS2) nanoribbons with V-shaped defect and H-saturation on the edges have been studied. Our results show that the spin-polarized transport properties can be found in all the considered zigzag MoS2 nanoribbons systems. The edge defects, especially the V-shaped defect on the Mo edge, and H-saturation on the edges can suppress the electronic transport of the systems. Also, the spin-filtering and negative differential resistance behaviors can be observed obviously. The mechanisms are proposed for these phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号