首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Klebsiella pneumoniae is declared as antibiotic resistant by WHO, with the critical urgency of developing novel antimicrobial therapeutics as drug resistance is the second most dangerous threat after terrorism. Besides many attempts still, there is no effective vaccine available against K. pneumoniae. By utilizing all the available proteomic data we prioritized the novel proteins ideal for vaccine development using bioinformatics tools and techniques. Among the huge data, eight proteins passed all the barriers and were considered ideal candidates for vaccine development. These include: copper silver efflux system outer membrane protein (CusC), outer membrane porin protein (OmpN), Fe++ enterobactin transporter substrate binding protein (fepB), zinc transporter substrate binding protein (ZnuA), ribonuclease HI, tellurite resistant methyltransferase (the B), and two uncharacterized hypothetical proteins (WP_002918223 and WP_002892366). These proteins were also subjected to epitope analysis and were found best for developing subunit vaccine against K. pneumoniae. The study shows that the potential vaccine targets are sufficiently efficient being virulent, of outer membranous origin and can be proposed for the DNA third-generation vaccines development that would help to cope up infections caused by multidrug-resistant K. pneumoniae.  相似文献   

2.
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and responsible for causing life-threatening infections. The emergence of hypervirulent and multidrug-resistant (MDR) S. aureus strains led to challenging issues in antibiotic therapy. Consequently, the morbidity and mortality rates caused by S. aureus infections have a substantial impact on health concerns. The current worldwide prevalence of MRSA infections highlights the need for long-lasting preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine candidates and drug target proteins against the 16 strains of MRSA using reverse vaccinology and subtractive genomics approaches. Using the reverse vaccinology approach, 4 putative antigenic proteins were identified; among these, PrsA and EssA proteins were found to be more promising vaccine candidates. We applied a molecular docking approach of selected 8 drug target proteins with the drug-like molecules, revealing that the ZINC4235426 as potential drug molecule with favorable interactions with the target active site residues of 5 drug target proteins viz., biotin protein ligase, HPr kinase/phosphorylase, thymidylate kinase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase, and pantothenate synthetase. Thus, the identified proteins can be used for further rational drug or vaccine design to identify novel therapeutic agents for the treatment of multidrug-resistant staphylococcal infection.  相似文献   

3.
In the past few decades, genome-based approaches have contributed significantly to vaccine development. Our aim was to identify the most conserved and immunogenic antigens of Streptococcus pneumoniae, which can be potential vaccine candidates in the future. BLASTn was done to identify the most conserved antigens. PSORTb 3.0.2 was run to predict the subcellular localization of the proteins. B cell epitope prediction was done for the immunogenicity testing. Finally, BLASTp was done for verifying the extent of similarity to human proteome to exclude the possibility of autoimmunity. Proteins failing to comply with the set parameters were filtered at each step. Based on the above criteria, out of the initial 22 pneumococcal proteins selected for screening, pavB and pullulanase were the most promising candidate proteins.  相似文献   

4.
5.
Streptococcus pneumoniae is a colonizer of the human nasopharynx, which accounts for most of the community-acquired pneumonia cases and can cause non-invasive and invasive diseases. Current available vaccines are serotype-specific and the use of recombinant proteins associated with virulence is an alternative to compose vaccines and to overcome these problems. In a previous work, we describe the identification of proteins in S. pneumoniae by reverse vaccinology and the genetic diversity of these proteins in clinical isolates. It was possible to purify a half of 20 selected proteins in soluble form. The expression of these proteins on the pneumococcal cells surface was confirmed by flow cytometry. We demonstrated that some of these proteins were able to bind to extracellular matrix proteins and were recognized by sera from patients with pneumococcal meningitis infection caused by several pneumococcal serotypes. In this context, our results suggest that these proteins may play a role in pneumococcal pathogenesis and might be considered as potential vaccine candidates.  相似文献   

6.
Leishmaniasis is a group of diseases with a spectrum of clinical manifestations ranging from cutaneous ulcers to visceral leishmaniasis, which results from the bite of an infected sandfly to human. Attempts to develop an effective vaccine have been shown to be feasible but no vaccine is in active clinical use. This study adopts a Reverse Vaccinology approach to identify common vaccine candidates from both highly pathogenic species Leishmania major and Leishmania infantum. Total proteome of both species were compared to identify common proteins, which are further taken for sub-cellular localization and transmembrane helices prediction. Plasma membrane proteins having only one transmembrane helix were first identified and analyzed which are non-homologous in human and mouse in order to avoid molecular mimicry with other proteins. Selected proteins were analyzed for their binding efficiency to both major histocompatibility complex (MHC) class I and class II alleles. As a result, 19 potential epitopes are screened in this study using different approaches, which can be further verified through in vivo experiments in MHC compatible animal models. This study demonstrates that Reverse Vaccinology approach has potential in discovering various immunogenic antigens from in silico analysis of pathogen??s genome or proteome instead of culturing the whole organism by conventional methods.  相似文献   

7.
The global pool of intracellular metabolites is a reflection of all the metabolic functions of an organism. In the absence of in situ methods capable of directly measuring metabolite pools, intracellular metabolite measurements need to be performed after an extraction procedure. In this study, we evaluated the optimization of technologies for generation of a global metabolomics profile for intracellular metabolites in Klebsiella oxytoca. Intracellular metabolites of K. oxytoca were extracted at the early stationary phase using six different common extraction procedures, including cold methanol, boiling ethanol, methanol/chloroform combinations, hot water, potassium hydroxide, and perchloric acid. The metabolites were subsequently collected for further analysis, and intracellular metabolite concentration profiles were generated using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. During analysis, the stability of metabolites extracted using cold methanol was clearly higher than that obtained by other extraction methods. For the majority of metabolites, extracts generated in this manner exhibited the greatest recovery, with high reproducibility. Therefore, the use of cold ethanol was the best extraction method for attaining a metabolic profile. However, in another parallel extraction method, perchloric acid may also be required to maximize the range of metabolites recovered, particularly to extract glucose 1-phosphate and NADPH.  相似文献   

8.
Nigella species are widely used to cure various ailments. Their health benefits, particularly from the seed oils, could be attributed to the presence of a variety of bioactive components. Roasting is a critical process that has historically been used to facilitate oil extraction and enhance flavor; it may also alter the chemical composition and biological properties of the Nigella seed. The aim of this study was to investigate the effect of the roasting process on the composition of the bioactive components and the biological activities of Nigella arvensis and Nigella sativa seed extracts. Our preliminary study showed that seeds roasted at 50 °C exhibited potent antimicrobial activities; therefore, this temperature was selected for roasting Nigella seeds. For extraction, raw and roasted seed samples were macerated in methanol. The antimicrobial activities against Streptococcus agalactiae, Streptococcus epidermidis, Streptococcus pyogenes, Candida albicans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, and Klebsiella oxytoca were determined by measuring the diameter of the zone of inhibition. The cell viability of extracts was tested in a colon carcinoma cell line, HCT-116, by using a microculture tetrazolium technique (MTT) assay. Amino acids were extracted and quantified using an automatic amino acid analyzer. Then, gas chromatography–mass spectrometry (GC–MS) analysis was performed to identify the chemical constituents and fatty acids. As a result, the extracts of raw and roasted seeds in both Nigella species showed strong inhibition against Klebsiella oxytoca, and the raw seed extract of N. arvensis demonstrated moderate inhibition against S. pyogenes. The findings of the MTT assay indicated that all the extracts significantly decreased cancer cell viability. Moreover, N. sativa species possessed higher contents of the measured amino acids, except tyrosine, cystine, and methionine. The GC–MS analysis of extracts showed the presence of 22 and 13 compounds in raw and roasted N. arvensis, respectively, and 9 and 11 compounds in raw and roasted N. sativa, respectively. However, heat treatment decreased the detectable components to 13 compounds in roasted N. arvensis and increased them in roasted N. sativa. These findings indicate that N. arvensis and N. sativa could be potential sources of anticancer and antimicrobials, where the bioactive compounds play a pivotal role as functional components.  相似文献   

9.
The use..... of aqueous leaf extract of Lavandula × intermedia for biosynthesis of silver nanoparticles (AgNPs) is presented. The plant extract was obtained by boiling dried leaves and using the obtained filtrate for the synthesis of AgNPs. The study was conducted to investigate an ecofriendly approach to metal nanoparticle synthesis and to evaluate the antimicrobial potential of both the aqueous plant extract and resulting silver nanoparticles against different microbes using the disc diffusion method. The synthesis of silver nanoparticles was monitored using ultraviolet–visible (UV–v is) spectroscopy, which showed a localized surface plasmon resonance band at 411 nm and a shift of the band to higher wavenumber of 422 nm after 90 min of reaction. Powder X-ray diffraction analysis and transmission electron microscopy of the obtained AgNPs revealed their crystalline nature, with average size of 12.6 nm. Presence of elemental silver was further confirmed by energy-dispersive X-ray spectroscopy. Fourier-transform infrared spectroscopy confirmed presence of phytochemicals from Lavandula × intermedia leaf extract on the AgNPs. The AgNPs showed good antimicrobial activity with inhibition zone ranging from 10 to 23 mm; the largest inhibition zone (23 mm) occurred against Escherichia coli. Generally, the AgNPs displayed more antimicrobial activity against all investigated pathogens compared with Lavandula × intermedia leaf extract, and were also more active than streptomycin against Klebsiella oxytoca and E. coli at the same concentration. The silver nanoparticles showed prominent antimicrobial activity with a lowest minimum inhibitory concentration (MIC) value of 15 μg/mL against E. coli, K. oxytoca, and Candida albicans.  相似文献   

10.
Typhoid fever is a multisystemic illness caused by Salmonella enterica serovars Typhi and is resistant to most antibiotics and drugs. The resistance is conferred through multidrug resistance (MDR) proteins, which efflux most antibiotics and other drugs. We predicted potential candidate B-cell and T-cell epitopes using bio- and immune-informatics tools in the 11 MDR proteins - EmrA, EmrB, EmrD, MdtA, MdtB, MdtC, MdtG, MdtH, MdtK, MdtL and TolC. The antigenic potential of the MDR proteins was calculated using VaxiJen server. The B-cell and T-cell epitopes of the MDR proteins were predicted using BCPred and ProPredI and ProPred respectively. The binding affinities of the predicted T-cell epitopes were estimated using T-epitope designer and MHCPred tools. 10, 7, 5, 12, 14, 21, 26, 3, 3 and 3 B-cell epitopes were identified in EmrA, EmrB, EmrD, TolC, MdtA, MdtB, MdtC, MdtG, MdtH and MdtL respectively. We predicted 9 T-cell epitopes - YVSRRAVQP (EmrA), FGVANAISI (EmrB), MVNSQVKQA and YQGGMVNSQ (TolC), WDRTNSHKL (MdtA), FLRNIPTAI (MdtB), YVEQLGVTG (MdtG), VKWMYAIEA (MdtH) and LAHTNTVTL (MdtL) capable of eliciting both humoral and adaptive immune responses. These T-cell epitopes specifically bind to HLA alleles - DRB1*0101 and DRB1*0401. This is the first report of epitope prediction in the MDR proteins of S. Typhi. Taken together, these results indicate the MDR proteins – EmrA, MdtA and TolC are the most suitable vaccine candidates for S. Typhi. The findings of our study on the MDR proteins prove to be useful in the development of peptide-based vaccine for the prevention and/or treatment of typhoid fever.  相似文献   

11.
Omp33-36 in A. baumannii, a bacterium causing serious nosocomial infections, is a virulence factor associated with the pathogen metabolic fitness as well as its adherence and invasion to human epithelial cells. This protein is also involved in interaction of the bacteria with host cells by binding to fibronectin. Moreover, Omp33-36 renders cytotoxicity to A. baumannii in addition to inducing apoptosis and modulation of autophagy. In the present study, an integrated strategy is launched to pierce into the 3D structure of Omp33-36 protein. The signal peptide within the sequence was determined, then, topology as well as secondary and tertiary structures of the protein were predicted. The mature protein assigned as a 14-stranded barrel in which residues 1–19 is removed as signal peptide. The obtained 3D models were evaluated in terms of quality; and then, served as queries to find similar protein structures. The hits were analyzed regarding topology among which 14-stranded were considered. The most qualified model was refined and then its sequence aligned to its counterpart similar structure protein (CymA from Klebsiella oxytoca). The determined structure of Omp33-36 could justify its porin function and carbapenem-resistance associated with the loss of this protein.  相似文献   

12.
The substrate specificity of the heat-stable stereospecific amidase from Klebsiella oxytoca was investigated. In addition to the original substrate, 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide, the amidase accepted 2-hydroxy-2-(trifluoromethyl)-butanamide and 3,3,3-trifluoro-2-amino-2-methylpropanamide as substrates. Compounds with larger side chains and compounds where the hydroxyl group was substituted with a methoxy group, or in which the CF3 group was substituted by CCl3, were not accepted. The biotransformation is a new synthetic route to (R)-(+)-3,3,3-trifluoro-2-amino-2-methylpropanoic acid, and its related (S)-(−)-amide, and to (R)-(+)-2-hydroxy-2-(trifluoromethyl)-butanoic acid and its related (S)-(−)-amide.  相似文献   

13.
The changes in physical, chemical and biological properties of chemical compounds decide about their biological activity. In this paper the molecular structure of alkali metal 3,4-dihydroxyphenylacetates is studied in comparison to 3,4-dihydroxyphenylacetic acid (3,4-DHPAA) using FT-IR, FT-Raman and UV–Vis spectroscopy as well as density functional theory (DFT) calculations. The B3LYP/6-311++G7 method is used to calculate optimized geometrical structures of studied compounds, atomic charges (Mulliken, APT, NBO), dipole moments, energies as well as the wavenumbers and intensities of the bands in vibrational spectra. Theoretical parameters are compared to the experimental data. The relationship between spectroscopic parameters of studied compounds and their biological activity is analyzed. Antioxidant activity is studied using FRAP and DPPH methods. IC50 parameter is also calculated. Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella oxytoca are used in microbiological analysis of 3,4-DHPAA as well as its sodium and potassium salts.  相似文献   

14.
The first total synthesis of a heptasaccharide found in the iron-binding exopolysaccharide produced by Klebsiella oxytoca BAS-10 has been achieved in excellent yield using a block synthetic strategy. A trisaccharide glycosyl donor was stereoselectively coupled with a tetrasaccharide glycosyl acceptor using the trichloroacetimidate activation procedure. The yields and stereo outcome were excellent in each step of glycosylation. A late stage oxidation protocol was adopted for the oxidation of the primary hydroxyl group to the carboxylic functionality while keeping a secondary hydroxyl group unaffected.  相似文献   

15.
We report on an approach to rapidly screen thousands of Salmonella Enteritidis proteins with the goal of identifying novel immunodominant proteins. We used a microarray-based system that warrants high throughput and easy handling. Seven immunogenic candidates were selected after screening. Comparative analyses by ELISA and microarrays manifested their immunodominant character. The large repetitive protein (SEN4030) that plays a role as a putative adhesin in initial cell surface interaction and is highly specific to Salmonella is considered to be the most suitable protein for a diagnostic approach. The results further demonstrate that the strategy applied herein is convenient for specifically identifying immunogenic proteins of pathogenic microorganisms. Consequently, it enables a sound assessment of promising candidates for diagnostic applications and vaccine development. Moreover, the elucidation of immunogenic proteins may assist in unveiling unknown virulence-associated factors, thus furthering the understanding of the underlying pathogenicity of Salmonella in general, and of S. Enteritidis, one of the most frequently detected serovars of this pathogen, in particular. Figure
The microarray-based approach was aimed at identifying novel immunodominant proteins of S. Enteritidis. Seven antigens were revealed by screening a cDNA expression library. SEN4030, a large repetitive protein specific for salmonella, is considered an optimal candidate for future applications.  相似文献   

16.
The Thermanerovibrio acidaminovorans DSM 6589 (tai) is a unique bacterium isolated from anaerobic sludge bed reactor from sugar refinery in Netherland. The comparative genomic studies for understanding the hypothetical proteins in T. acidaminovorans DSM 6589 (tai) were carried out using different bioinformatic tools and web servers. In all 320 hypothetical proteins were screened from the total available genome. The Insilico function prediction for 320 hypothetical proteins was achieved by using different online servers like CDD-Blast, Interproscan and pfam whereas, the structure prediction for 202 hypothetical proteins were deciphered by using protein structure prediction server (PS2 server). The sub-cellular localization for the identified proteins was predicted by the use of cello v2.5 for 320. The study carried out has helped us to understand the structures and functions of unknown proteins available in T. acidaminovorans DSM 6589 (tai) through comparative genomic approach.  相似文献   

17.
BackgroundOncogenic human papilloma viruses (HPV) are the cause of various types of cancer, specifically cervical cancer. L1 protein is the main protein of HPV capsid which targeted in many vaccine-producing attempts. However, they have not enough coverage on the various high risk HPV types. Therefore, having a low cost potent HPV vaccine to protect against all members of the α-papillomaviridea family will be promising. In this study, L1 protein-based peptide vaccine was designed using immunoinformatics methods which provides physicochemical properties such as stability in room temperature, potential of antigenicity, non-allergic properties and no requirement with eukaryotic host system.ResultsThe designed vaccine has two HPV conserved epitopes with lengths 18 and 27 amino acids in all members of α-papillomaviridea. These peptides promote humoral and cellular immunity and INF-γ responses. In order to ensure strong induction of immune responses, Flagellin, a Toll like receptor 5(TLR-5) agonist, and a short synthetic toll like receptor 4 (TLR-4) agonist were also joined to the epitopes. Structure of the designed- vaccine was validated using Rampage and ERRAT and a high quality 3D structure of the vaccine protein was provided. Docking studies demonstrated an appropriate and stable interaction between the vaccine and TLR-5.ConclusionsThe vaccine is expected to have a high quality structure and suitable properties including high stability, solubility and a high potential to be expressed in E.coli. High potentiality of the vaccine in inducing humoral and cellular immune responses, may be considered as an anti-tumor vaccine.  相似文献   

18.
Virulence-related outer membrane proteins (Omps) are expressed in bacteria (Gram-negative) such as V. cholerae and are vital to bacterial invasion in to eukaryotic cell and survival within macrophages that could be best candidate for development of vaccine against V. cholerae. Applying in silico approaches, the 3-D model of the Omp was developed using Swiss model server and validated byProSA and Procheck web server. The continuous stretch of amino acid sequences 26 mer: RTRSNSGLLTWGDKQTITLEYGDPAL and 31 mer: FFAGGDNNLRGYGYKSISPQDASGALTGAKY having B-cell binding sites were selected from sequence alignment after B cell epitopes prediction by BCPred and AAP prediction modules of BCPreds. Further, the selected antigenic sequences (having B-cell epitopes) were analyzed for T-cell epitopes (MHC I and MHC II alleles binding sequence) by using ProPred 1 and ProPred respectively. The epitope (9 mer: YKSISPQDA) that binds to both the MHC classes (MHC I and MHC II) and covers maximum MHC alleles were identified. The identified epitopes can be useful in designing comprehensive peptide vaccine development against V. cholerae by inducing optimal immune response.  相似文献   

19.
Cholera continues to be a major global health concern. Among different Vibrio cholerae strains, only O1 and O139 cause acute diarrheal diseases that are related to epidemic and pandemic outbreaks. The currently available cholera vaccines are mainly lived and attenuated vaccines consisting of V. cholerae virulence factors such as toxin-coregulated pili (TCP), outer membrane proteins (Omps), and nontoxic cholera toxin B subunit (CTB). Nowadays, there is a great interest in designing an efficient epitope vaccine against cholera. Epitope vaccines consisting of immunodominant epitopes and adjuvant molecules enhance the possibility of inciting potent protective immunity. In this study, V. cholerae protective antigens (OmpW, OmpU, TcpA and TcpF) and the CTB, which is broadly used as an immunostimulatory adjuvant, were analyzed using different bioinformatics and immunoinformatics tools. The common regions between promiscuous epitopes, binding to various HLA-II supertype alleles, and B-cell epitopes were defined based upon the aforementioned protective antigens. The ultimately selected epitopes and CTB adjuvant were fused together using proper GPGPG linkers to enhance vaccine immunogenicity. A three-dimensional model of the thus constructed vaccine was generated using I-TASSER. The model was structurally validated using the ProSA-web error-detection software and the Ramachandran plot. The validation results indicated that the initial 3D model needed refinement. Subsequently, a high-quality model obtained after various refinement cycles was used for defining conformational B-cell epitopes. Several linear and conformational B-cell epitopes were determined within the epitope vaccine, suggesting likely antibody triggering features of our designed vaccine. Next, molecular docking was performed between the 3D vaccine model and the tertiary structure of the toll like receptor 2 (TLR2). To gain further insight into the interaction between vaccine and TLR2, molecular dynamics simulation was performed, corroborating stable vaccine-TLR2 binding. In sum, the results suggest that our designed epitope vaccine could incite robust long-term protective immunity against V. cholera.  相似文献   

20.
Invasive aspergillosis caused by the mould Aspergillus fumigatus is a life‐threatening lung or systemic infection in the immunocompromised host. In this study, a protective immune response against the disease was achieved in two infected rabbits, and the cellular fungal antigenic proteome that mediated such a response was investigated against the background of vaccine development efforts. Altogether, 59 different Aspergillus proteins were found becoming reactive in the course of the developing immunity, many of which are described in this context for the first time. These included proteins related to oxidative stress management, glycolysis and other metabolic pathways. As oxidative stress is suspected to be one of the major defense mechanisms, the results may indicate at least in part a continuous response of the pathogen to evade the host's immune system. In addition, proteins with suspected cell surface association or crucial function for fungal cell development were identified. As these antigens are newly recognized during the process of the developing immunoprotection, they may not only represent valuable infection markers but also importantly broaden the list of possible vaccine candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号