首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The linear and third-order nonlinear optical absorptions in semiparabolic quantum wells are studied in detail. Analytic formulas for the linear and third-order nonlinear optical absorption coefficients are obtained using the compact density matrix approach. Based on this model, numerical results are presented for typical GaAs/AlGaAs semiparabolic quantum wells. The results show that the factors of the incident optical intensity and the semiparabolic confinement frequency have great influences on the total optical absorption coefficients.  相似文献   

2.
The nonlinear optical properties of a D system confined in a spherical quantum dot represented by a Gaussian confining potential are studied. The great advantage of our methodology is that the model potential possesses the finite height and range. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. We calculate the linear, third-order nonlinear and total optical absorption coefficients under the density matrix formalism. Numerical results for GaAs − Ga1 − xAlxAs QDs are presented. Our results show that the optical absorption coefficients in a spherical QD are much larger than their values for GaAs quantum wells. It is found that optical absorptions are strongly affected not only the confinement barrier height, dot radius, the electron-impurity interaction but also the position of the impurity.  相似文献   

3.
Wenfang Xie 《Physics letters. A》2011,375(8):1213-1217
In this study, a detailed investigation of the nonlinear optical properties of the (D+,X) complex in a disc-like parabolic quantum dot has been carried out by using the matrix diagonalization method and the compact density-matrix approach. First, the numeric calculations and analysis of the oscillator strength of intersubband quantum transition from the ground state into the first excited state at the varying confinement frequency have been performed. Second, the linear, third-order nonlinear, and total absorption coefficients and refractive indices have been investigated. It is observed that the confinement frequency of QDs and the intensity of the illumination have drastic effects on the nonlinear optical properties. In addition, we find that all kinds of absorption coefficients and refractive indices of an exciton in QDs shift to lower energies and their peak values have considerably decreases induced by the impurity.  相似文献   

4.
A detailed investigation of optical properties of donor impurities in quantum dots under the influence of laser field with Gaussian potential is performed by using the matrix diagonalization method within the effective mass approximation. Based on the computed energies and wave functions, the dependence of the nonlinear optical properties on the dot size and the potential depth is investigated. The outcome of the calculation suggests that all the factors mentioned above can influence the nonlinear optical properties strongly. We also note that the increase of the laser-dressing parameter leads to important effects on the electronic and optical properties of a quantum dot. This gives a new degree of freedom in various device applications based on the intersubband transition of electrons.  相似文献   

5.
Optical absorption coefficients and refractive index changes associated with intersubband transition in typical GaAs/AlxGa1−xAs spherical quantum dots are theoretically investigated, both in the presence and in the absence of the conduction band non-parabolicity effect. In this regard, the effect of band non-parabolicity on the eigenvalues and eigenfunctions of the dot has been performed using the Luttinger-Kohn effective mass equation. Also, by means of the compact-density-matrix approach the linear and nonlinear optical absorption coefficients and refractive index changes have been calculated. The results show that magnitudes of these quantities are decreased and the peaks are shifted to the lower energies as the influence of band non-parabolicity is considered.  相似文献   

6.
We study the variations of optical properties of self-assembled In0.5Ga0.5As single quantum dots (QDs) in the spatial and time domains by combining a near-field scanning optical microscope with an ultrafast pulsed laser. Through the examinations of several tens of QDs, we find that the variations of photoluminescence (PL) intensity strongly depend on the condition of the initial carrier creation. The differences in quantum efficiency and those in the carrier flow rate into QDs cause the large distribution of PL intensity when the carriers are excited in the barrier layers. From the results of time-resolved PL decay measurements, we find that there are two types of QDs exhibiting quite different PL decay profiles.  相似文献   

7.
In the present work, we investigate the nonlinear optical properties emerged from excitonic features in an experimentally realized spherical parabolic semiconductor quantum dot (QD). The lowest exciton states together with relevant wave functions are calculated through the expansion method with direct matrix diagonalization method within the effective mass approximation. The effect of the size of QD and confinement potential in exciton state is studied in details. Results show that with increasing the size of the QD the energy of exciton decreases because of decreasing of the effect of coulomb potential. Using the compact density matrix formalism second order nonlinear optical rectification (χ(2)χ(2)) are obtained. By means of the applied electric and magnetic field we manipulate the exciton states and control the nonlinear optical response in a typical GaAs, InAs, CdSe QDs. Our model system presents a way to control the performance of excitonic optoelectronic devices based on semiconductor nanostructures.  相似文献   

8.
Using the density matrix method, the linear optical properties of truncated pyramid quantum dots have been investigated when an additional coupling field is introduced. The absorption coefficients and refractive index changes are strongly affected by the amplitude of the coupling field and the phase difference between the probe and coupling fields. The numerical results indicate that negative absorption and transparency can be obtained when both of the probe and coupling fields are in resonance with the quantum dots.  相似文献   

9.
Optical absorption coefficients and refractive index changes associated with intersubband transition of an off-center hydrogenic impurity in a spherical quantum dot (QD) with Gaussian confinement potential are theoretically investigated. Our results show that the optical absorption coefficients in a spherical QD are 2–3 orders of magnitude higher than those in quantum wells and are 2–3 orders smaller than those in a disk-like QD. It is found that the optical absorptions and the optical refractive index are strongly affected not only by the confinement barrier height, dot radius but also by the position of the impurity.  相似文献   

10.
Linear and nonlinear intersubband optical absorption and refractive index change in asymmetrical semi-exponential quantum wells are theoretically investigated within the framework of the compact–density–matrix approach and iterative method. The wave functions are obtained by using the effective mass approximation. The energy levels are obtained by numerical method. It is found that the optical absorption coefficients and refractive index changes are strongly affected not only by σ   and U0U0, but also by the incident optical intensity.  相似文献   

11.
12.
The optical properties of InAs quantum dots with GaAsSb buffer, capping and cladding layers of different alloy compositions are studied by photoluminescence techniques. Fully strained GaAsSb layers show that the inclusion of a buffer layer gives a blue-shift to quantum dot emission, while for quantum dots capped with GaAsSb a clear red-shift is seen. Power-dependent photoluminescence suggests a transition from type-I to type-II can be achieved by GaAsSb at Sb composition between 11–13%, while the transition for the GaAsSb cladding layer occurs at around 11%. At low Sb composition, good crystal quality and energy barrier are detected by temperature-dependent photoluminescence, while high-level dislocation and defects exist under high antimony content, as evidenced by X-Ray Diffraction and Transmission Electron Microscopy.  相似文献   

13.
冯振宇  闫祖威 《中国物理 B》2016,25(10):107804-107804
The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of the electrons with both confined and surface optical phonons. Besides, the interaction between impurity and phonons is also considered. Numerical calculations are presented for typical Zn_(1-x)Cd_xSe/ZnSe material. It is found that the polaronic effect or electric field leads to the redshifted resonant peaks of the optical rectification coefficients. It is also found that the peak values of the optical rectification coefficients with the polaronic effect are larger than without the polaronic effect, especially for smaller Cd concentrations or stronger electric field.  相似文献   

14.
In this paper, we studied the nonlinear optical properties of a negative donor center (D) in a disk-like quantum dot (QD) with a Gaussian confining potential. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A detailed investigation of the linear, third-order nonlinear, total optical absorptions and refractive index changes has been carried out for the D QD and the D0 QD. The linear, third-order nonlinear, total optical absorptions and refractive indices have been examined for a double-electron QD with and without impurity. Our results show that the optical absorption coefficients and refractive indices in a disk-like QD are much larger than their values for quantum wells and spherical QDs and the nonlinear optical properties of QDs are strongly affected not only with the confinement barrier height, dot radius, the number of electrons but also the electron-impurity interaction.  相似文献   

15.
The linear and nonlinear optical properties of parabolic quantum dots in which two electrons interact with each other through both coulomb repulsion and longitudinal-optical phonon are studied by using the matrix diagonalization method. With typical semiconducting GaAs-based materials, the linear, third-order nonlinear, total optical absorption coefficients and the optical refractive index have been examined. The effects of different electron-phonon coupling strengths on the linear and nonlinear optical properties are also predicted.  相似文献   

16.
An investigation of the nonlinear optical rectification of a hydrogenic impurity, which is in a two-dimensional disc-like quantum dot (QD) with parabolic confinement potential, has been performed by using the perturbation method in the effective mass approximation. Both the electric field and the confinement effects on the energy are investigated in detail. The results are presented as a function of the incident photon energy for the different values of the confinement strength and the electric field. It is found that the nonlinear optical properties of hydrogenic impurity states in a disc-like QD are strongly affected by the confinement strength and the electric field.  相似文献   

17.
ABSTRACT

The states of a single dopant centre in zinc-blende GaN-based conical quantum dots with spherical cap are theoretically investigated by analytically solving the corresponding effective mass equation taking advantage of the localisation of the ionised impurity at the cone apex. Nonlinear optical response is analysed through the calculation of the coefficients of optical absorption, relative refractive index change, and second and third harmonic generation, for the chosen set of allowed electron-donor states. The behaviour of the calculated optical quantities under changes in the geometry of the system due to variations in apical width and quantum dot radius is analysed and discussed.  相似文献   

18.
Linear and nonlinear transport through a quantum dot that is weakly coupled to ideal quantum leads is investigated in the parameter regime where charging and geometrical quantization effects coexist. The exact eigenstates and spins of a finite number of correlated electrons confined within the dot are combined with a rate equation. The current is calculated in the regime of sequential tunneling. The analytic solution for an Anderson impurity is given. The phenomenological charging model is compared with the quantum mechanical model for interacting electrons. The current-voltage characteristics show Coulomb blockade. The excited states lead to additional fine-structure in the current voltage characteristics. Asymmetry in the coupling between the quantum dot and the leads causes asymmetry in the conductance peaks which is reversed with the bias voltage. The spin selection rules can cause a ‘spin blockade’ which decreases the current when certain excited states become involved in the transport. In two-dimensional dots, peaks in the linear conductance can be suppressed at low temperatures, when the total spins of the corresponding ground states differ by more than 1/2. In a magnetic field, an electron number parity effect due to the different spins of the many-electron ground states is predicted in addition to the vanishing of the spin blockade effect. All of the predicted features are consistent with recent experiments.  相似文献   

19.
A theoretical study of the effects of intense laser fields on the nonlinear properties of donor impurities in a quantum dot with Woods-Saxon potential is performed within the matrix diagonalization method with the use of the effective mass approximation. The great advantage of our methodology is that it enables confinement regimes by varying two parameters in the model potential. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Based on the computed energies and wave functions, the optical absorption coefficients and the refractive index between the ground state (L=0) and the first excited state (L=1) have been examined. Several configurations of the barrier height, the dot radius, the barrier slope of the confinement potential and the incident intense laser radiation have been considered. The outcome of the calculation suggests that all the factors mentioned above can influence the nonlinear optical properties strongly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号