首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed the thermal crystallization, glass‐transition behavior, and mechanical properties of melt‐extruded poly(trimethylene terephthalate) (PTT) films to investigate their physical aging and annealing effects. The physical aging and annealing of PTT films had an influence on the glass‐transition temperature, recrystallization behavior, and mechanical properties. When samples were aged at an ambient temperature, the crystallization temperature decreased largely within 5 h, the heat of crystallization increased, and the breaking stress and breaking elongation increased. The glass‐transition temperature of annealed samples, which was obtained from differential scanning calorimetry and dynamic mechanical measurements, increased with increasing annealing temperature below 80 °C but decreased above that temperature. In addition, the glass‐transition temperature and modulus of annealed samples were largely affected by the annealing time; in particular, they increased sharply within 1 h on annealing at 50 °C. Consequently, the change in the glass‐transition temperature on annealing was ascribed to the fact that the molecular constraint due to recrystallization and the mobility of rigid amorphous PTT chains competed with each other, being dependent on the annealing temperature. The mechanical properties of aged samples were closely related to their cold‐crystallization behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1920–1927, 2001  相似文献   

2.
王笃金 《高分子科学》2011,29(2):251-258
The early stage of polymer crystallization may be viewed as physical gelation process,i.e.,the phase transition of polymer from liquid to solid.Determination of the gel point is of significance in polymer processing.In this work,the gelation behavior of poly(butylene succinate)(PBS) at different temperatures has been investigated by rheological method.It was found that during the isothermal crystallization process of PBS,both the storage modulus(G′) and the loss modulus(G″) increase with time,and the rheological response of the system varies from viscous-dominated(G′G″),meaning the phase transition from liquid to solid.The physical gel point was determined by the intersection point of loss tangent curves measured under different frequencies.The gel time(t_c) for PBS was found to increase with increasing crystallization temperature.The relative crystallinity of PBS at the gel point is very low(2.5%-8.5%) and increases with increasing the crystallization temperature.The low crystallinity of PBS at the gel point suggests that only a few junctions are necessary to form a spanning network,indicating that the network is"loosely"connected,in another word,the critical gel is soft.Due to the elevated crystallinity at gel point under higher crystallization temperature,the gel strength S_g increases, while the relaxation exponent n decreases with increasing the crystallization temperature.These experimental results suggest that rheological method is an effective tool for verifying the gel point of biodegradable semi-crystalline polymers.  相似文献   

3.
The improvement of oxygen‐barrier properties of glassy polyesters by orientation was examined. Poly(ethylene terephthalate) (PET), poly(ethylene naphthalate), and a copolymer based on PET in which 55 mol % of the terephthalate was replaced with bibenzoate (PET‐BB55) were oriented by constrained uniaxial stretching. In a fairly narrow window of stretching conditions near the glass‐transition temperature, it was possible to achieve uniform extension of the polyesters without crystallization or stress whitening. The processes of orientation and densification correlated with the conformational transformation of glycol linkages from gauche to trans. Oxygen permeability, diffusivity, and solubility decreased with the amount of orientation. A linear relationship between the oxygen solubility and polymer specific volume suggested that the cold‐drawn polyester could be regarded as a one‐phase densified glass. This allowed an analysis of oxygen solubility in accordance with free‐volume concepts of gas permeability in glassy polymers. Orientation was seen as the process of decreasing the amount of excess‐hole free volume and bringing the nonequilibrium polymer glass closer to the equilibrium (zero‐solubility) condition. Cold drawing most effectively reduced the free volume of PET‐BB55. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 862–877, 2002  相似文献   

4.
Propylene was copolymerized with the linear α‐olefins 1‐octene, 1‐decene, 1‐tetradecene, and 1‐octadecene. The metallocene catalyst Me2Si(2‐Me Benz[e]Ind)2ZrCl2, in conjunction with methylalumoxane as a cocatalyst, was used to synthesize the copolymers. The copolymers were characterized by 13C and 1H NMR with a solvent mixture of 1,2,4‐trichlorobenzene (TCB) and benzene‐d6 (9/1) at 100 °C. Thermal analyses were carried out to determine the melting and crystallization temperatures, whereas the molecular weights and molecular weight distributions were determined by gel permeation chromatography with TCB at 140 °C. Glass‐transition temperatures were determined with dynamic mechanical analysis. Relationships among the comonomer type and amount of incorporation and the melting/crystallization temperatures, glass‐transition temperature, crystallinity, and molecular weight were established. Moreover, up to 3.5% of the comonomer was incorporated, and there was a decrease in the molecular weight with increased comonomer content. Also, the melting and crystallization temperatures decreased as the comonomer content increased, but this relationship was independent of the comonomer type. In contrast, the values for the glass‐transition temperature also decreased with increased comonomer content, but the extent of the decrease was dependent on the comonomer type. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4110–4118, 2000  相似文献   

5.
Blends of poly(trimethylene terephthalate) (PTT) and poly(ethylene terephthalate) in the amorphous state were miscible in all of the blend compositions studied, as evidenced by a single, composition‐dependent glass‐transition temperature observed for each blend composition. The variation in the glass‐transition temperature with the blend composition was well predicted by the Gordon–Taylor equation, with the fitting parameter being 0.91. The cold‐crystallization (peak) temperature decreased with an increasing PTT content, whereas the melt‐crystallization (peak) temperature decreased with an increasing amount of the minor component. The subsequent melting behavior after both cold and melt crystallizations exhibited melting point depression behavior in which the observed melting temperatures decreased with an increasing amount of the minor component of the blends. During crystallization, the pure components crystallized simultaneously just to form their own crystals. The blend having 50 wt % of PTT showed the lowest apparent degree of crystallinity and the lowest tensile‐strength values. The steady shear viscosity values for the pure components and the blends decreased slightly with an increasing shear rate (within the shear rate range of 0.25–25 s?1); those of the blends were lower than those of the pure components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 676–686, 2004  相似文献   

6.
The cold crystallization at temperature Tcc (melting > Tcc > glass transition) and the postmelting crystallization of polylactic acid plasticized by compressed carbon dioxide (CO2) were studied using a high-pressure differential scanning calorimeter. The kinetics of the two kinds of crystallization were evaluated by the Avrami equation as a function of pressure at certain temperatures. The effects of using talc as a nucleation agent on the two types of crystallization under pressure were also investigated. The results show that compressed CO2 increased the mobility of the polymer chains in solid state, resulting in an increased rate of cold crystallization. The decreased rate of postmelting crystallization was mainly in the nucleation-controlled region, which indicates that the number of nuclei was decreased by the compressed CO2. The growth rate of the two crystallization types followed the Avrami equation, but the kinetics of each depended upon temperature and pressure. The inclusion of talc accelerated postmelting crystallization but had little effect on cold crystallization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2630–2636, 2008  相似文献   

7.
Atomic force microscopy (AFM) was used for in-situ observation of nanoscale morphological transformations during the ageing step in sol-gel synthesis. Silica, alumina and silica-alumina samples with different Si/Al ratios were prepared from inorganic salt precursors and geled at low pH. Silica and silica-alumina samples formed branch-like gel network made of nanometer-sized clusters. During ageing at room temperature, the overall structure of the gel network remained unchanged but the clusters underwent phase transformation, coaslesence, coarsening, fragmentation, as well as dissolution resulting in the internal restructuring of the gel material. Morphological transformation associated with crystallization of pseudo-boehmite phase was observed for the alumina samples. These nanometer-scale processes are expected to play a key role in dictating the material properties of the final sol-gel product.  相似文献   

8.
采用DSC研究了PZT P(VDF TrFE) 70 30复合材料的非等温结晶和居里相变过程 .结果表明 ,PZT粒子对共聚物基体的结晶行为 ,包括结晶温度、结晶速率和结晶度等影响不大 ;然而共聚物的居里相变过程则受到PZT粒子的影响 ,随PZT粒子含量的增大 ,共聚物基体的居里相变热焓与熔体结晶热焓的比值减小 ,而且其中对应从顺电性的高温相 (HT)转变为铁电性的过冷相 (CL)的相变热焓含量减小 ,意味着PZT粒子的存在能够抑制共聚物铁电晶体中旁式构象缺陷的形成 ,从而提高铁电晶体的完善度  相似文献   

9.
Phase transition of water restrained by curdlan suspension annealed at a temperature from 20 to 110°C was investigated by differential scanning calorimetry (DSC). The melting temperature of water restrained by annealed curdlan discontinuously decreased at around 60°C, while the amount of bound water calculated from enthalpy of melting increased at 60°C, regardless of water content. Using a highly sensitive DSC, curdlan suspension with various concentrations was studied. It was found that an endothermic transition was observed at ca. 58°C in a wide range of concentrations. The transition observed at 60°C is thermo-reversible and both temperature and transition enthalpy are constant even after gel formation. Well equilibrated suspension at a temperature lower than 60°C formed no gel.  相似文献   

10.
Crosslinking is an effective way to improve polymer properties. This paper focuses on ultraviolet‐induced crosslinking of poly(butylene succinate) (PBS) in the presence of a photoinitiator and a crosslinking agent at ambient temperature. The effects of the concentration of photoinitiator, the crosslinking agent content, and the irradiation time on the crosslink behavior were investigated. To obtain an appropriate gel fraction in different irradiation times, 3.0 wt% of photoinitiator and 10.0 wt% of crosslinking agent were proved to be the optimum choice. Furthermore, properties such as thermal properties, dynamic mechanical property, and enzymatic degradation of PBS before and after crosslinking were examined. Differential scanning calorimetry (DSC) analysis revealed that glass transition temperature (Tg) increased with increase in gel fraction, while melting temperature (Tm) and the degree of crystallinity decreased. This may be caused by the reduced molecular chain mobility and inhibited molecular motion for crystallization in crosslinked samples. The crosslinked polymer also showed improved thermal stability and dynamic mechanical property. In addition, the introduction of crosslinking retarded the enzymatic degradation rate of PBS, but it was still biodegradable. The improved properties of crosslinked PBS will extend the application of PBS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The kinetics of phase transitions including a transition between mesophases were studied for a main-chain thermotropic polyester by means of DSC and depolarizing transmittance techniques. The isothermal process of these transitions was found to be described by the Avrami equation to high conversions. The Avrami exponents n are about 2,4, 5.3 and 2.2 for liquid crystallization, transition between mesophases and crystallization from mesophase respectively. The liquid crystallization from isotropic liquid phase occurs at very low undercoolings with high transformation rate. This behavior is explained as the results of the smaller value of the surface free energy for mesophase than that for crystallites which is evidenced by the very weak temperature dependence of liquid crystallization rate.  相似文献   

12.
本文通过热分析、红外联用和X射线衍射分析了不同煅烧温度下的纳米掺铁二氧化钛样品,研究了sol-gel方法制备的纯二氧化钛和掺铁二氧化钛干凝胶的热分解和晶化过程,结果表明,干凝胶有较为明显的两个阶段的热分解。在实验上得到的二氧化钛干凝胶粉为无定形,无定形二氧化钛加热晶化过程是一个持续的过程,没有明显的晶化温度。  相似文献   

13.
牛艳华 《高分子科学》2016,34(9):1117-1128
Crosslinking reactions of high density polyethylene with low peroxide concentrations ranging from 0.1 wt% to 1.0 wt% at temperatures of 170, 180 and 190 ° C were monitored by rheological measurements. A critical gel forms at the peroxide concentration of 0.2 wt%, where the transition from long chain branching generation to crosslinking network formation could occur. Rheokinetics of crosslinking can be fitted well by Ding-Leonov's model. The curing rate k_2 at the earlier stage exhibits about 3 times acceleration per 10 °C with increasing temperature, while the equilibrium modulus G′ at the fully cured stage is almost independent of temperature. Influences of crosslinking on the subsequent crystallization behaviors were detected by DSC measurements. Above the critical gel concentration, crystallization is largely retarded as evidenced by the lower crystallization temperature Tc and crystallinity X_c due to the network formation. The secondary crystallization valley located at the temperature near 80 °C can be observed above the critical concentration, which becomes more evident with the increasing peroxide concentration and curing temperature. This phenomenon provides another evidence of crystallization retardation by the crosslinking network.  相似文献   

14.
Nanostructured wollastonite was synthesized by a sol–gel method and then used as a filler for polypropylene (PP). The obtained wollastonite particles were investigated using XRD, TEM and FTIR techniques. Non-isothermal crystallization measurements revealed that the wollastonite filler reduced the crystallization temperature of the matrix. TGA analyses showed improved thermal stability of the nanocomposite with respect to that of the pure polypropylene. From the DMA tan δ curves, it was concluded that the introduction of the filler into the PP matrix induced a slight shift of the β-transition (glass transition) towards higher temperature. The measurements of storage moduli showed that the nanocomposites have higher stiffness than the pure PP over the whole range of test temperature. An increase in stiffness was also confirmed by tensile measurements.  相似文献   

15.
Crystal growth rate coefficients, k of the colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropylacrylamide) were measured from the time-resolved reflection spectroscopy mainly by the inverted mixing method in the deionized state. Crystallization of colloidal silica spheres were also measured for comparison. The k values of gel and silica systems increased sharply as the sphere concentration and suspension temperature increased. The k values of gel system were insensitive to the degree of cross-linking in the range from 10 to 2?mol% of cross-linker against amount of the monomer in mole and decreased sharply when the degree of cross-linking decreased further to 0.5?%. The k values increased as gel size increased. The k values of gel systems at 20?°C were small and observed only at the very high sphere concentration in volume fraction, whereas those at 45?°C were high but smaller than those of silica systems. Induction time (t i) after which crystallization starts, increased as the degree of cross-linking increased and/or the gel size decreased at any temperatures, when comparison was made at the same gel concentration. The t i values at 45?°C were high and decreased sharply with increasing sphere concentration, whereas those at 20?°C were high only at the very high sphere concentrations. Significant difference in the k and t i values between the soft gels and hard silica spheres was clarified. These kinetic results support that the electrical double layers play an important role for the gel crystallization in addition to the excluded volume of gel spheres. It is deduced further that the electrical double layers of the gel system form from the vague interfaces (between soft gel and water phases) compared with those of typical colloidal hard sphere system.  相似文献   

16.
The simultaneous DSC-FTIR was used for the observation of crystallization and melting of poly(vinylidene fluoride) (PVDF) and its blends with poly(methyl methacrylate) (PMMA) and poly(ethyl methacrylate) (PEMA). The isothermal crystallization was carried out under the condition of both α-form and γ-form crystallized competitively. The crystal growth rate of α -form and γ -form were evaluated from the absorbance changes at 795 cm-1 (α -form, CH2 rocking) and 810 cm-1 (γ -form, CH2 rocking) obtained by the DSC-FTIR. The crystal growth rate of γ -form decreased at the same crystallization temperature in the order of PVDF/syn-PMMA, PVDF/PEMA and PVDF/at-PMMA, which was corresponding to the order of interaction parameter. The mechanism of α -g transition of PVDF in the miscible blends with at-PMMA, syn-PMMA and PEMA was evaluated from the relationship between the decrease of α -form and the increase of γ -form. The critical crystallization temperature, at which the transformation from α -form to γ -form proceeded only in the solid state, shifted to higher temperature side in the order of interaction parameter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Three kinds of nylon 10 14 crystals with different perfections were prepared under various crystallization conditions. The Brill transition behavior of these nylon 10 14 crystals was investigated by variable-temperature X-ray diffraction. It was found that the crystallization conditions influence the Brill transition temperature greatly. The Brill transition temperature of the lamellar crystals grown from dilute solution is so high that no Brill transition temperature can be observed before melting. However, for crystals postannealed at 125 °C, the Brill transition temperature is as low as 130 °C. The results show that the Brill transition behavior of nylons is strongly dependent on the crystallization conditions, for example, the perfections of the crystals.  相似文献   

18.
Poly(ethylene glycol)‐b‐polycaprolactone (MPEG‐PCL) diblock copolymers were synthesized via a ring‐opening polymerization of ε‐CL monomers with MPEG as an initiator. Their solubilities and apparent critical micelle concentrations (CMC) in aqueous solution were investigated as well as the determination of the micellar hydrodynamic diameter using dynamic light scattering (DLS). As PCL block length increased, the solubility and CMC decreased while diameters of micelles increased. The gel–sol transition behaviors were investigated using a vial tilting method. Aqueous solutions of copolymers undergo a gel to sol transition with increase in temperature when their polymer concentrations are above a critical gel concentration (CGC). The CGC of the copolymers and gel–sol transition temperature are influenced by the PCL chain length. The tapping mode AFM was performed by imaging the freeze‐dried deposits from the copolymer solutions on mica to investigate a process from free chains to micelles and to gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3406–3417, 2006  相似文献   

19.
In this work bimodal structured titanium dioxide (TiO2) microsphere has been prepared from commercial TiO2 powder and nano-sized titania gel via sol–gel spray-coating technique. Crystallization and transformation behavior of titania gel were investigated. The results revealed that the crystallization and transformation of anatase particles were substantially affected by the concentration of solvent and calcination temperature. Anatase crystallite size of 10 nm was obtained at mole ratio of solvent/precursor 50/1 and calcination temperature of 450 °C. The prepared nano-sized titania gel was embedded within the core (commercial TiO2, P25) during the spraying process. The prepared TiO2 microsphere was characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), field emission electron microscope (FESEM) and micropore analysis. The photocatalytic activity was monitored by following the degradation of phenol with activity benchmarked against commercial P25 (Degussa). The increase of photocatalytic activity of TiO2 microsphere was attributed to the nano-sized anatase crystallite which has been incorporated into the TiO2 microsphere.  相似文献   

20.
Differential scanning calorimetry, thermogravimetry, thermogravimetry/mass spectrometry and infrared spectroscopy were used to study the thermal behaviour of high polyphenylacetylene obtained through the Mo(CO)6 catalyzed metathesis polymerization of phenylacetylene. The exothermic peaks observed in nitrogen are explained by crystallization or a solid state transition, initiation and decomposition to aromatic compounds, and the endothermic peaks by volatilization. In oxygen the exothermic peaks are explained by crystallization or a solid state transition, initiation, oxidation, cross-linking and decomposition. The TG and MS results indicate that the polymer is stable to ca. 250°C with solvent molecules trapped in the polymer matrix evolving below this temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号