首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic NMR of 1-phenylethynyl-3,5-bis(pentaphenylphenyl)benzene (1) and 1,3,5-tris(pentaphenylphenyl)benzene (2) allows us to determine two rotational barriers for each compound. For 1, a first process exhibits ΔG = 39.2 kJ/mol followed by a second one with a ΔG value of 69.9 kJ/mol. Two processes with similar rotational barriers are found for 2 (70.9 and 75.3 kJ/mol). Motional processes which can be related to these barriers are 60° and 180° rotations of the pentaphenylphenyl units about the single bond with the core benzene ring and rotation of the terminal phenyl rings of the pentaphenylphenyl units. The results are discussed considering the consequences of these processes on the NMR spectra.  相似文献   

2.
The NMR solution spectra of the title sulfide and sulfone show decoalescence of the geminal methyl signals of the isopropyl groups at low temperature (−178 °C for the 13C signal of sulfide at 150.8 MHz and −147 °C for the 1H signal of sulfone at 600 MHz). The barriers for the related dynamic processes were measured (4.3 and 7.0 kcal mol−1 for the sulfide and sulfone, respectively). The preferred conformer of sulfide has a propeller shape with a C1 symmetry, as suggested by Molecular Mechanics (MM) calculations. In the case of sulfone the preferred conformer has a propeller shape with a C2-anti symmetry, as indicated by calculations and supported by X-ray crystallographic determination. The computed contour map of the potential energy shows that in both cases the dynamic processes take place via correlated rotations (cogwheel mechanism) of the two aromatic substituents about the Ar-S bonds. Dynamic processes could not be observed by NMR in the title sulfoxide, which was also found to adopt a propeller shaped conformation, as indicated by MM calculations and X-ray diffraction.  相似文献   

3.
The new compound Cs4P2Se10 was serendipitously produced in high purity during a high-temperature synthesis done in a nuclear magnetic resonance (NMR) spectrometer. 31P magic angle spinning (MAS) NMR of the products of the synthesis revealed that the dominant phosphorus-containing product had a chemical shift of −52.8 ppm that could not be assigned to any known compound. Deep reddish brown well-formed plate-like crystals were isolated from the NMR reaction ampoule and the structure was solved with X-ray diffraction. Cs4P2Se10 has the triclinic space group P-1 with a=7.3587(11) Å, b=7.4546(11) Å, c=10.1420(15) Å, α=85.938(2)°, β=88.055(2)°, and γ=85.609(2)° and contains the [P2Se10]4− anion. To our knowledge, this is the first compound containing this anion that is composed of two tetrahedral (PSe4) units connected by a diselenide linkage. It was also possible to form a glass by quenching the melt in ice water, and Cs4P2Se10 was recovered upon annealing. The static 31P NMR spectrum at 350 °C contained a single peak with a −35 ppm chemical shift and a ∼7 ppm peak width. This study highlights the potential of solid-state and high-temperature NMR for aiding discovery of new compounds and for probing the species that exist at high temperature.  相似文献   

4.
5.
Rigid spacer-chelator with the framework of 3 has been prepared. Building units with two parallel coordination sites such as salen and oxazoline units have also been synthesized. The spacer-chelators, 11 and 15, readily self-assembled with metal complexes such as Zn++ and Co++ to form molecular rectangles. The overall dimensions of the rectangles, 13 and 17, are 6.2 Å × 23.5 Å. The characterization of the supramolecules by NMR, mass spectroscopy, and X-ray crystal structures is also reported.  相似文献   

6.
The high-temperature polymorphs of two photocatalytic materials, BiNbO4 and BiTaO4 were synthesized by the ceramic method. The crystal structures of these materials were determined by single-crystal X-ray diffraction. BiNbO4 and BiTaO4 crystallize into the triclinic system P1¯ (No. 2), with a=5.5376(4) Å, b=7.6184(3) Å, c=7.9324(36) Å, α=102.565(3)°, β=90.143(2)°, γ=92.788 (4)°, V=326.21 (5) Å3, Z=4 and a=5.931 (1) Å, b=7.672 (2) Å, c=7.786 (2) Å, α=102.94 (3)°, β=90.04 (3)° γ=93.53 (3)°, V=344.59 (1) Å3 and Z=4, respectively. The structures along the c-axis, consist of layers of [Bi2O2] units separated by puckered sheets of (Nb/Ta)O6 octahedra. Photocatalytic studies on the degradation of dyes indicate selectivity of BiNbO4 towards aromatics containing quinonic and azo functional groups.  相似文献   

7.
BaMoO4 amorphous and crystalline thin films were prepared from polymeric precursors. The BaMoO4 was deposited onto Si wafers by means of the spinning technique. The structure and optical properties of the resulting films were characterized by FTIR reflectance spectra, X-ray diffraction (XRD), atomic force microscopy (AFM) and optical reflectance. The bond Mo-O present in BaMoO4 was confirmed by FTIR reflectance spectra. XRD characterization showed that thin films heat-treated at 600 and 200 °C presented the scheelite-type crystalline phase and amorphous, respectively. AFM analyses showed a considerable variation in surface morphology by comparing samples heat-treated at 200 and 600 °C. The reflectivity spectra showed two bands, positioned at 3.38 and 4.37 eV that were attributed to the excitonic state of Ba2+ and electronic transitions within MoO2−4, respectively. The optical band gaps of BaMoO4 were 3.38 and 2.19 eV, for crystalline (600 °C/2 h) and amorphous (200 °C/8 h) films, respectively. The room-temperature luminescence spectra revealed an intense single-emission band in the visible region. The PL intensity of these materials was increased upon heat-treatment. The excellent optical properties observed for BaMoO4 amorphous thin films suggested that this material is a highly promising candidate for photoluminescent applications.  相似文献   

8.
Microscopic information on the complexation of Be2+ with cyclo-tri-μ-imidotriphosphate anions in aqueous solution has been gained by both 9Be and 31P NMR techniques at −2.3 °C. Separate NMR signals corresponding to free and complexed species have been observed in both spectra. Based on an empirical additivity rule, i.e., proportionality observed between the 9Be NMR chemical shift values and the number of coordinating atoms of ligand molecules, the 9Be NMR spectra have been deconvoluted. By precise equilibrium analyses, the formation of [BeX(H2O)3]+ and [BeX2(H2O)2]0 (X = non-bridging oxygen donor as a coordination atom in the phosphate groups) has been verified, and the formation of complexes coordinating with the nitrogen atoms of the cyclic framework in the ligand molecule has been excluded. Instead, the formation of one-to-one (ML) complexes, one-to-two (ML2), together with two-to-one (M2L) complexes (L = cP3O6(NH)3) has been disclosed, the stability constants of which have been evaluated as log KML = 3.87 ± 0.03 (mol dm−3)−1, log KML2 = 2.43 ± 0.03 (mol dm−3)−2 and log KM2L = 1.30 ± 0.02 (mol dm−3)−2, respectively. 31P NMR spectra measured concurrently have verified the formation of the complexes estimated by the 9Be NMR measurement. Intrinsic 31P NMR chemical shift values of the phosphorus atoms belonging to ligand molecules complexed with Be2+, together with the 31P-31P spin-spin coupling constants have been determined.  相似文献   

9.
A novel thermosetting resin based on cyano functionalized benzoxazine (BZCN) has been synthesized from 2,6-bis(4-diaminobenzoxy)benzonitrile phenol and formaldehyde by solution reaction. The structure of the monomer is supported by FTIR, 1H NMR and 13C NMR spectra, which have exhibited that the reactive benzoxazine rings and cyano group exist in the molecular structure of BZCN. The curing reactions of BZCN are monitored by the disappearance of the nitrile peak and the tri-substituted benzene ring that is attached with oxazine ring peak at 2231 and 930 cm−1, respectively. The complete cured materials could achieve char yields up to 70% at 800 °C in nitrogen atmosphere, above 64% at 600 °C in air (20% oxygen) environments and the glass transition temperature up to 250 °C. The thermally activated curing polymerization reaction of BZCN follows multiple polymerization mechanisms via the ring-opening polymerization of oxazine rings and the triazine ring-formation of cyano groups, which contribute to the stability of the polymer.  相似文献   

10.
New aliphatic-aromatic and fully aromatic phosphonate polyamides were prepared by polycondensation reaction of our synthesized aromatic diamine: tetraethyl[(2,5-diamino-3,6-dimethylbenzene-1,4-diyl)dimethanediyl]bis(phosphonate) with the specific di-acylchloride (adipoyl chloride, isophthaloyl chloride and terephthaloyl chloride). The chemical structure of all samples were characterized by (1H and 31P) NMR, MALDI-TOF MS, FT-IR tools, whereas their thermal properties were determined by DSC and TGA techniques. The phosponate polyadipamide (referred as PAP) is a semi-crystalline sample with a melting temperature at about 261 °C and glass transition (Tg) of 71 °C. All polymers show two thermal degradation steps in the temperature range 270-550 °C. Each polymer, independently its structure, shows the first maximum rate of thermal decomposition temperature (PDT) around 300-310 °C, which may be due to thermal degradation of phoshonate groups. MALDI-TOF spectra, beside the linear oligomers terminated with the specific groups expected in accord to the synthesis procedure, reveals the presence of cyclic oligomers in the polyadipamide and polyisophthalamide samples.  相似文献   

11.
The thermal reactions of polybutadiene (PB) at 260 °C in inert atmosphere were followed by 1H and 13C NMR spectroscopy. Within 24 h of heating, the change in the intensities of some peaks and the appearance of new peaks of NMR spectra permits to follow the reactions occurring in polybutadiene. The sample, after heating for 6 h, was then characterized by a two dimensional HSQC NMR spectrum, showing the appearance of CH3CH moiety, and the migration of double bond in polybutadiene. From these results the new mechanism of intra/intermolecular reactions was proposed.  相似文献   

12.
Liquid-crystalline polybutadiene-diols (LCPBDs) with the comb-like architecture were synthesized by reaction of a LC thiol with the double bonds of telechelic HO-terminated polybutadiene (PBD). LCPBDs with various initial molar ratios of thiol to double bonds of PBD, R0, in the range from 0.15 to 1, were prepared by the radical reaction at temperature 60 °C for 48 h. The experimentally obtained degree of modification, Re, after the reaction and purification, was determined from elemental analysis - from the amount of sulphur bounded in LCPBDs, GPC and from 1H NMR spectra. The physical properties were investigated by differential scanning calorimetry and dynamic mechanical spectroscopy. With increasing Re ratio the glass transition temperature of LCPBDs, Tg, increases from ∼ − 45 °C (neat PBD) to ∼20 °C (Re ∼ 0.5). LC transition starts at Re ∼ 0.27 (the transition temperature Tm ∼ 27 °C). With increasing Re temperature Tm increases and for Re ∼ 0.5 reaches the value Tm ∼ 74 °C; at the same time also the change in enthalpy at LC transition increases. The LC transition could be detected also by the dynamic mechanical spectroscopy; especially shape and position of mechanical functions on frequency and free volume parameters strongly depend on degree of modification.  相似文献   

13.
A giant, 100-membered metallocycle 3 was prepared via coordination bond-based self-assembly from W-shaped ligand 9 and a palladium complex. Metallocycle 3 may create three topologically discrete subcavities, thus capable of binding up to three molecules of a diamide guest by hydrogen-bonding interactions. Elemental analysis, 1H NMR, and the ESI-mass spectra, and vapor pressure osmometry (VPO) data were all consistent with the structure of 3. N,N,N′,N′-tetramethylterephthalamide G was used as a guest for the binding study, and ESI-mass spectrum clearly displayed a characteristic, intense peak at m/z 1542 (41%), attributed to the fragment [3·G3-3CF3SO3]3+ of 1:3 (host/guest) complex. The 1H NMR titration experiments gave association constants of 2300 ± 300 and 1200 ± 200 M−1 in CDCl3 at 25 °C for two identical outer cavities, with weak positive cooperativity (Hill coefficient h = 1.3).  相似文献   

14.
Two new C2v cavitands with protective side chains were synthesized and their binding properties for small molecules were studied. Cavitand 7 having benzyl side chains binds ethanol most strongly with Ka = 1508 M−1 at 20 °C in CDCl3, which was driven entropically. Cavitand 8 having coumarinyl side chains showed weaker binding due to its steric hindrance. 1H NMR spectra show that carceroisomers of ethanol or acetonitrile@cavitand 7 exist in 3:1 ratio at 20 °C. The binding tendencies of the guest molecules were increased in nonpolar solvent media.  相似文献   

15.
2-Methoxy ethyl acrylate (MEA), a functional monomer was homopolymerized using atom transfer radical polymerization (ATRP) technique with methyl 2-bromopropionate (MBP) as initiator and CuBr/N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system; polymerization was conducted in bulk at 60 °C and livingness was established by chain extension reaction. The kinetics as well as molecular weight distribution data indicated towards the controlled nature of polymerization. The initiator efficiency and the effect of initiator concentration on the rate of polymerization were investigated. The polymerization remained well-controlled even at low catalyst concentration of 10% relative to initiator. The influence of different solvents, viz. ethylene carbonate and toluene on the polymerization was investigated. End-group analysis for the determination of high degree of functionality of PMEA was determined with the help of 13C{1H} NMR spectra. Chain extension experiment was conducted with PMEA macroinitiator for ATRP of acrylonitrile (AN) in ethylene carbonate at 70 °C using CuCl/bpy as catalyst system. The composition of individual blocks in PMEA-b-PAN copolymers was determined using 1H NMR spectra.  相似文献   

16.
The Brønsted acid-base polymer electrolyte membrane was prepared by entrapping imidazole in sulfonated poly(phenylene oxide) at the molar ratio of Im/SPPO = 2:1. The hybrid showed a high thermal stability up to 200 °C and peroxide tolerance. Differential scanning calorimetry shows that glass transition temperature is 232 °C. The conductivity increases with temperature exceeding 10−3 S/cm above 120 °C and a high conductivity of 6.9 × 10−3 S/cm was obtained at 200 °C under 33% RH conditions.  相似文献   

17.
Compounds M(CO)23-C3H5)(L-L)(NCBH3) (L-L = dppe, M = Mo(1), W(2); L-L = bipy, M = Mo(3), W(4); L-L = en, M = Mo(5), W(6)) were prepared and characterized. The single crystal X-ray analyses of 2-6 revealed that the cyanotrihydroborate anion bonds to the metal through a nitrogen atom, the open face of the allyl group being pointed toward the two carbonyls (endo-isomer). In compounds 2, 5, and 6, the two donor atoms of the bidentate ligand occupy equatorial and axial positions, respectively. In the solid state structures of compounds 3 and 4 both nitrogen atoms of the bipy ligand occupy equatorial positions. The NMR spectroscopy reveals a fluxional behavior of compounds 1, 2, 5, and 6 in solution. Although the fluxional behavior of compounds 5 and 6 ceased at about −40 °C, that of compound 1 could not be stopped even at −90 °C. Their low temperature conformations are consistent with their solid state structures. Both the endo- and exo-isomers coexist in solution for compounds 3 and 4.  相似文献   

18.
Violet (1) and blue (2) polymorphous modifications of [Cu(men)2Pt(CN)4]n (men = N-methyl-1,2-diaminoethane) have been prepared and investigated by IR and UV-vis spectroscopy, thermal analysis, measurement of magnetic data and X-ray structural analysis. Both modifications are formed by similar but differently packed zigzag chains, which consist of [Cu(men)2]2+ moieties bridged by two trans arranged cyanido groups of [Pt(CN)4]2− units. The Cu(II) atoms in both structures are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate men ligands with the average Cu-N(Me) and Cu-N(H2) bond lengths of 2.046(8) and 2.008(8) Å, respectively, and by two nitrogen atoms from bridging cyanido groups in the axial positions at average distance of 2.50(7) Å. Broad nearly symmetric bands observed in the UV-vis spectra of 1 and 2 of 2B1g → 2Eg transitions are consistent with a deformed octahedral coordination of the CuN6 chromophoric groups. One and two ν(CN) absorption bands observed in the IR spectra of 1 and 2, respectively, are in agreement with different local symmetries of [Pt(CN)4]2− units and different Cu-N(cyanido) bond lengths in these polymorphs and are subject of discussion on the spectral-structural correlations in 1D compounds. The complexes are stable up to 238 °C when their two-stage thermal decompositions start and ending up with a mixture of CuO and metallic Pt as the most probable final thermal decomposition products. The temperature dependence of the magnetic susceptibility suggests the presence of a weak antiferromagnetic exchange coupling between Cu(II) atoms in 1, J/hc = −0.17 cm−1 and in 2, J/hc = −1.3 cm−1.  相似文献   

19.
A series of coating materials were prepared from two classes of hyperbranched polymers containing short fluorocarbon chains (HPEFs/HPUFs). The obtained hyperbranched polymers were characterized by FT-IR, 1H NMR, 13C NMR, 19F NMR, GPC and TG analyses. HPEFs/HPUFs exhibited very low surface free energies (13.67-24.49 mJ/m2) which almost are independent of their internal backbone but dependent on the terminal fluorocarbon chains. Highly hydrophobic and/or oleophobic surfaces of cotton woven fabric can be achieved from these polymers by solution-immersion coating method. The static and dynamic wettabilities of the HPEFs/HPUFs treated fabrics have been investigated. The static contact angles reached to 146°, 122° and 102° for water, hexadecane and decane, respectively. The lowest contact angle hysteresis reached to 5.9°.  相似文献   

20.
The X-ray crystal structure of naphtho-9-crown-3 ether, 1 is reported. The molecule crystallizes in the monoclinic P2(1)/c space group with a=8.866(2) Å, b=6.451(1) Å, c=20.110(4) Å and β=91.055(4)°, with Z=4. The 2:1 naphtho-9-crown-3 LiClO4 complex, 2 crystallizes in the triclinic P-1 space group with a=10.5075(10) Å, b=11.7283(11) Å, c=15.9921(15) Å and β=84.289(2)°, with Z=2. There are two distinct complexes found in the crystal, one ordered and one disordered in the crown portion of the molecule. 13C CPMAS NMR spectra for 1 and 2 are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号