首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Activation volumes of the wall-motion and nucleation processes in Co-based multilayer films were characterized from time-resolved domain evolution patterns. These activation volumes were both sensitive to the multilayer structure as well as the film preparation condition. The two activation volumes were generally unequal with each other and the inequality directly influenced on magnetization reversal behavior.  相似文献   

2.
We report domain reversal behavior in perpendicular ferromagnetic nanothin films investigated by means of a novel magneto-optical microscope magnetometer, capable of grabbing domain reversal patterns in real time under an applied field as well as simultaneous measurements of 8000 local hysteresis loops with 400-nm special resolution. Three contrasting domain reversal behaviors are found to exist: wall-motion dominant, dendritic-growth dominant, and nucleation dominant reversal. Quantitative analysis reveals that the contrasting reversal behavior is mainly caused by a sensitive change in wall-motion speed and that the reversal ratio of wall-motion speed over nucleation rate is a governing parameter for the contrasting domain reversal dynamics. The activation volumes of the wall-motion and nucleation processes are found generally unequal, and the inequality is closely related with the domain dynamics. The domain reversal pattern is truly coincident with submicron-scale local coercivity variation and local switching time of domain evolution is exponentially dependent on local coercivity governed by a thermal activation relaxation process. The observed domain reversal behavior could be well predicted by a Monte Carlo simulation of a micromagnetic model based on the uniaxial magnetic anisotropy of nanothin films.  相似文献   

3.
《Current Applied Physics》2020,20(9):1026-1030
We have comprehensively investigated asymmetric magnetization reversal behaviors of (x-Å Co/7.7 Å Pt)5 multilayers (x = 3.1 and 4.7) with perpendicular magnetic anisotropy. Our direct observation of magnetic domain structures by means of magneto-optical microscopy reveals that the asymmetry arises both from nucleation and wall-motion processes. An asymmetric nucleation behavior is observed, which could be originated from the preexisting non-reversed domains which might have a reproducible or random spatial distribution, controllable by tuning the field profile. An asymmetric wall-motion behavior stemming from asymmetric stripe domain evolution is also observed.  相似文献   

4.
ABSTRACT

The rate of nucleation processes such as the freezing of a supercooled liquid or the condensation of supersaturated vapour is mainly determined by the height of the nucleation barrier and the diffusion coefficient for the motion across it. Here, we use a Bayesian inference algorithm for Markovian dynamics to extract simultaneously the free energy profile and the diffusion coefficient in the nucleation barrier region from short molecular dynamics trajectories. The specific example we study is the nucleation of vapour bubbles in liquid water under strongly negative pressures, for which we use the volume of the largest bubble as a reaction coordinate. Particular attention is paid to the effects of discretisation, the implementation of appropriate boundary conditions and the optimal selection of parameters. We find that the diffusivity is a linear function of the bubble volume over wide ranges of volumes and pressures, and is mainly determined by the viscosity of the liquid, as expected from the Rayleigh–Plesset theory for macroscopic bubble dynamics. The method is generally applicable to nucleation processes and yields important quantities for the estimation of nucleation rates in classical nucleation theory.  相似文献   

5.
We study the Kolmogorov-Johnson-Mehl-Avrami theory of phase conversion in finite volumes. For the conversion time we find the relationship tau(con)=tau(nu)[1+f(d)(q)]. Here d is the space dimension, tau(nu) the nucleation time in the volume V, and f(d)(q) a scaling function. Its dimensionless argument is q=tau(ex)/tau(nu), where tau(ex) is an expansion time, defined to be proportional to the diameter of the volume divided by expansion speed. We calculate f(d)(q) in one, two, and three dimensions. The often considered limits of phase conversion via either nucleation or spinodal decomposition are found to be volume-size dependent concepts, governed by simple power laws for f(d)(q).  相似文献   

6.
Acoustic emission generated by the nucleation of a microcrack in the proximity of a macrocrack is discussed in this paper. On the basis of some simple approximations the acoustic emission from a crack-opening event is directly related to its crack-opening volume as a function of time. It is shown that the nucleation of a microcrack in the immediate vicinity of a macrocrack generates additional crack-opening volumes for both the macrocrack and the microcrack, whose signals tend to be much larger than those that would emanate from a nucleating solitary microcrack.  相似文献   

7.
Dislocation nucleation is essential to the plastic deformation of small-volume crystalline solids. The free surface may act as an effective source of dislocations to initiate and sustain plastic flow, in conjunction with bulk sources. Here, we develop an atomistic modeling framework to address the probabilistic nature of surface dislocation nucleation. We show the activation volume associated with surface dislocation nucleation is characteristically in the range of 1-10b3, where b is the Burgers vector. Such small activation volume leads to sensitive temperature and strain-rate dependence of the nucleation stress, providing an upper bound to the size-strength relation in nanopillar compression experiments.  相似文献   

8.
We have studied crystallization in poly(ethylene oxide) droplets with volumes ranging over several orders of magnitude. In all samples, homogeneous nucleation is observed, scaling with the volume of the droplet, down to systems with as few as approximately 10 polymer chains. Surprisingly, nucleation is unaffected by the high degree of confinement, despite a large surface-to-volume ratio and the restriction of chains to length scales much smaller than the radius of gyration. Nucleation was also found to be independent of chain length for two molecular weights studied, differing by an order of magnitude. The results suggest that, for these highly supercooled systems, the formation of a nucleus is influenced by its immediate surroundings and does not depend on the entire length of the constituent chains.  相似文献   

9.
We report the experimental finding that a complete magnetizing field HM exists in magnetization reversal dynamics of ferromagnetic thin films, which is much larger than the apparent magnetic saturation field measured from the major hysteresis loop. Magnetization reversal dynamics contrastingly changes from nucleation dominated to wall-motion dominated according to an initial magnetization state magnetized by a field below HM, whereas it is basically unchanged when the field is larger than HM. The complete magnetizing field is found to be 1.5–2.0 times larger than the apparent magnetic saturation field and 6–10 times smaller than the anisotropy field in Co/Pd multilayer thin films.  相似文献   

10.
We have studied dielectric spectra of the glass-forming liquid metafluoroaniline under hydrostatic pressure up to 700 MPa. Its glass transition pressure p(g) increases approximately linearly with temperature. Above p(g)(T), a well pronounced secondary relaxation, the Johari beta peak, is observed showing activated behavior. The activation energy rises proportionally to pressure and, consequently, proportionally to the glass transition temperature T(g)(p). The activation volume is independent of temperature but exhibits different values for pressures higher and lower than the pressure where the liquid left the ergodic regime. The activation volumes are about 1/10 and 1/6 of the molecular volume of fluoroaniline, respectively, suggesting that there are two different species of clusters.  相似文献   

11.
We present the experimental results of the magnetic viscosity, demagnetization curve and recoil loop for isotropic nanocrystalline Pr12Fe82B6 ribbons prepared by melt-spinning. The thermal fluctuation field, activation volume and irreversible demagnetization are discussed. The coercivity mechanism is mainly determined by the inhomogeneous nucleation rather than a simple nucleation of reverse domain.  相似文献   

12.
ABSTRACT

We propose to characterise the “impenetrable” volumes of molecules A and B in a complex A---B by finding that contour of its electronic density that separates the molecular surfaces of A and B but leaves them almost touching. The volume of the complex within that contour is always less than within the 0.001 au contour. The percent difference measures the interpenetration of the two molecules at equilibrium, and is found to directly correlate with the binding energy of the complex. We interpret the volume of each molecule that is enclosed by the almost-touching contour as that molecule's impenetrable volume relative to its particular partner. The percents by which the molecules' relative impenetrable volumes differ from their 0.001 au volumes in the free states also correlate with the strengths of the interactions. This allows the “absolute” impenetrable volume of any molecule to be estimated as ~25% of its 0.001 au volume in the free state. However this absolute impenetrable volume is only approached by the molecule in a relatively strong interaction.  相似文献   

13.
K.S. Ng 《哲学杂志》2013,93(5):677-688
A statistical theory is proposed to describe the jerky deformation of micron-sized crystal pillars. The probability for a specimen surviving the applied load without generating a strain burst of a given order is analytically expressed in terms of the nucleation rate of that burst. The survival probability can be measured from an ensemble of macroscopically similar deformation experiments to obtain the nucleation rate. From experiments on aluminium pillars, the nucleation rate is found to increase with the pillar size and to decrease with the burst order, indicating that more sources are present in a larger specimen and that the available nucleating sources are progressively exhausted by the occurrence of bursts. The activation volume measured is roughly independent of the pillar size and burst order, indicating a constant mechanism for burst nucleation.  相似文献   

14.
Accurate measurements of CSF volumes would assist in the diagnosis of several important neurological conditions. Using Magnetic Resonance Imaging (MRI) we have devised a method to measure both total intracranial CSF volume and ventricular volume. This initial study, in normal humans, provides an answer to two longstanding questions: first, do these volumes differ between the sexes; second, do both total and ventricular CSF volumes increase with normal aging? We found that the total cranial CSF volume and skull size of males were significantly greater than those of females, but that there was not a statistically significant difference between the ventricular volumes of the sexes. Total cranial CSF volume increased steeply with age in both sexes but although there was an increase in ventricular volume with age in males, no significant increase with age could be demonstrated in females.  相似文献   

15.
This paper describes how the compensation law can be explained by a linear relation between the activation entropy and enthalpy of a given process in a polymer. These two variables are related by the thermal expansion coefficient and a constant approximately equal to the Rao acoustical parameter. A relation between the activation free energy and some thermodynamic parameters is presented. The activated volumes for the α and β relaxations of polyethylene are shown to vary with temperature and cry-stallinity. The activated volume has also been calculated for some other polymers and is of the order of 1 to 6 molar volumes at 295 K.  相似文献   

16.
We propose another way of getting to the bottom of nucleation by using finite volume systems. Here we show, using a sharp tip, that a single nucleation event is launched as soon as the tip touches the supersaturated confined metastable solution. We thus control spatial and temporal location and demonstrate that confinement allows us to carry out predictive nucleation experiments. This control is a major step forward in understanding the factors influencing the nucleation process and its underlying physics.  相似文献   

17.
We investigate the excluded volumes of clusters in tetrahedral particle packing using an ideal tetrahedron model and Monte Carlo simulation. Both the influences of the size and topology of clusters on the excluded volume are studied. We find that the excluded volumes of the dimer composed of two tetrahedra and the wagon wheel composed of five tetrahedra are relatively lower than other cluster forms. For large clusters, the excluded volume decreases when the topology of a cluster approaches the wagon-wheel geometry. The results give an explanation to the cluster distribution which demonstrates that the dimer and wagon wheel are the dominative cluster forms in the packing structure of tetrahedra.  相似文献   

18.
We report the first atomistic calculation of the saddle-point configuration and activation energy for the nucleation of a 3D dislocation loop from a stressed crack tip in single crystal Cu. The transition state is found using reaction pathway sampling schemes, the nudged elastic band, and dimer methods. For the (111)[110] crack, loaded typically at 75% of the athermal critical strain energy release rate for spontaneous dislocation nucleation, the calculated activation energy is 1.1 eV, significantly higher than the continuum estimate. Implications concerning homogeneous dislocation nucleation in the presence of a crack-tip stress field are discussed.  相似文献   

19.
Darin Leonhardt  Sang M. Han   《Surface science》2009,603(16):2624-2629
We have measured the time evolution of Ge nucleation density on SiO2 over a temperature range of 673–973 K and deposition rates from 5.1 × 1013 atoms/cm2 s (5 ML/min) to 6.9 × 1014 atoms/cm2 s (65 ML/min) during molecular beam epitaxy. The governing equations from mean-field theory that describe surface energetics and saturation nucleation density are used to determine the size and binding energy of the critical Ge nucleus and the activation energy for Ge surface diffusion on SiO2. The critical nucleus size is found to be a single Ge atom over substrate temperatures from 673 to 773 K, whereas a three-atom nucleus is found to be the critical size over substrate temperatures from 773 to 973 K. We have previously reported 0.44 ± 0.03 eV for the Ge desorption activation energy from SiO2. This value, in conjunction with the saturation nucleation density as a function of substrate temperature, is used to determine that the activation energy for surface diffusion is 0.24 ± 0.05 eV, and the binding energy of the three-atom nucleus is 3.7 ± 0.1 eV. The values of the activation energy for desorption and surface diffusion are in good agreement with previous experiments of metals and semiconductors on insulating substrates. The small desorption and surface diffusion activation barriers predict that selective growth occurring on window-patterned samples is by direct impingement of Ge onto Si and ready desorption of Ge from SiO2. This prediction is confirmed by the small integral condensation coefficient for Ge on SiO2 and two key observations of nucleation behavior on the window-patterned samples. The first observation is the lack of nucleation exclusion zones around the windows, and second is the independence of the random Ge nucleation density on patterned versus unpatterned oxide surfaces. We also present the Ge nucleation density as a function of substrate temperature and deposition rate to demarcate selective growth conditions for Ge on Si with a window-patterned SiO2 mask.  相似文献   

20.
For the homogeneous crystal nucleation process in a soft-core colloid model, we identify optimal reaction coordinates from a set of novel order parameters based on the local structure within the nucleus, by employing transition path sampling techniques combined with a likelihood maximization of the committor function. We find that nucleation is governed by solid clusters that consist of an hcp core embedded within a cloud of surface particles that are highly correlated with their nearest neighbors but not ordered in a high-symmetry crystal structure. The results shed new light on the interpretation of the surface and volume terms in classical nucleation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号