首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
闵新民 《化学学报》1992,50(5):449-455
对Cp~2Sm、C~p~2Y~b和Cp~3Sm 进行了非相对论和相对论SCF-X~α-SW计算, 用轨道相互作用、分子轨道图形、布居数分析等方法讨论了化学键图象。在Cp~2Ln(Ln=稀土元素)中以Cp为主要成分的轨道能级两种方案结果变化不大。而相对论间接效应的存在, 使Ln4f能级明显升高, 与Cp~2Ln易被氧化的实验结果一致。二价的Cp~2Ln成键轨道中Ln成分是d>f>p>s, 与三价的Cp~3Sm、LnF~3比较, Ln的s、p、d成分变化不大, 而Lnf成分明显减少, 使Cp~2Ln共价性明显地低于Cp~3Sm和LF~3。  相似文献   

2.
Treatment of M[N(SiMe3)2]3 (M = U, Pu (An); La, Ce (Ln)) with NH(EPPh2)2 and NH(EPiPr2)2 (E = S, Se), afforded the neutral complexes M[N(EPR2)2]3 (R = Ph, iPr). Tellurium donor complexes were synthesized by treatment of MI3(sol)4 (M = U, Pu; sol = py and M = La, Ce; sol = thf) with Na(tmeda)[N(TePiPr2)2]. The complexes have been structurally and spectroscopically characterized with concomitant computational modeling through density functional theory (DFT) calculations. The An-E bond lengths are shorter than the Ln-E bond lengths for metal ions of similar ionic radii, consistent with an increase in covalent interactions in the actinide bonding relative to the lanthanide bonding. In addition, the magnitude of the differences in the bonding is slightly greater with increasing softness of the chalcogen donor atom. The DFT calculations for the model systems correlate well with experimentally determined metrical parameters. They indicate that the enhanced covalency in the M-E bond as group 16 is descended arises mostly from increased metal d-orbital participation. Conversely, an increase in f-orbital participation is responsible for the enhancement of covalency in An-E bonds compared to Ln-E bonds. The fundamental and practical importance of such studies of the role of the valence d and f orbitals in the bonding of the f elements is emphasized.  相似文献   

3.
The results of quantum chemical calculations at the gradient-corrected density functional theory (DFT) level with the B3LYP functional of the donor-acceptor complexes R(3)E[bond]E'R' and their isomers R(2)E[bond]E'RR', where E, E' = B[bond]Tl and R, R' = H, Cl, or CH(3), are reported. The theoretically predicted energy differences between the donor-acceptor form R(3)E[bond]E'R' and the classical isomer R(2)E[bond]E'RR' and the bond dissociation energies of the E[bond]E' bonds are given. The results are discussed in order to show which factors stabilize the isomers R(3)E[bond]E'R'. There is no simple correlation of the nature of the group-13 elements E, E' and the substituents R, R' with the stability of the complexes. The isomers R(3)E[bond]'R' come stabilized by pi donor groups R', while the substituents R may either be sigma- or pi-bonded groups. Calculations of Cl(3)B[bond]BR' [R' = Cl, cyclopentadienyl (Cp), or Cp*] indicate that the Cp* group has a particularly strong effect on the complex form. The calculations show that the experimentally known complex Cl(3)B[bond]BCp* is the strongest bonded donor-acceptor complex of main-group elements that has been synthesized until now. The theoretically predicted B[bond]B bond energy is D(o) = 50.6 kcal/mol. However, the calculations indicate that it should also be possible to isolate donor-acceptor complexes R(3)E[bond]E'R' where R' is a sigma-bonded bulky substituent. Possible candidates that are suggested for synthetic work are the borane complexes (C(6)F(5))(3)B[bond]E'R' and (t)Bu(3)B[bond]E'R' (E' = Al[bond]Tl) and the alane complexes Cl(3)Al[bond]E'R' (E' = Ga[bond]Tl).  相似文献   

4.
The interaction of lanthanide(III) cations (Ln(III) = Sm(III), Eu(III), and Tb(III)) with the deprotonated form of the coumarin-3-carboxylic acid (cca-) has been investigated by density functional theory (DFT/B3LYP) and confirmed by reference MP2 and CCSD(T) computations. Solvent effects on the geometries and stabilities of the Ln(III) complexes were computed using a combination of water clusters and a continuum solvation model. The following two series of systems were considered: (i) Ln(cca)2+, Ln(cca)2+, Ln(cca)3 and (ii) Ln(cca)(H2O)2Cl2, Ln(cca)2(H2O)2Cl, Ln(cca)3. The strength and character of the Ln(III)-cca- bidentate bonding were characterized by calculated Ln-O bond lengths, binding energies, ligand deformation energies, energy partitioning analysis, sigma-donation contributions, and natural population analyses. The energy decomposition calculations predicted predominant electrostatic interaction terms to the Ln-cca bonding (ionic character) and showed variations of the orbital interaction term (covalent contributions) for the Ln-cca complexes studied. Electron distribution analysis suggested that the covalent contribution comes mainly from the interaction with the carboxylate moiety of cca-.  相似文献   

5.
A series of tetravalent An(IV) complexes with a bis-phenyl β-ketoiminate N,O donor ligand has been synthesized with the aim of identifying bonding trends and changes across the actinide series. The neutral molecules are homoleptic with the formula An((Ar)acnac)(4) (An = Th (1), U (2), Np (3), Pu (4); (Ar)acnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-(t)Bu(2)C(6)H(3)) and were synthesized through salt metathesis reactions with actinide chloride precursors. NMR and electronic absorption spectroscopy confirm the purity of all four new compounds and demonstrate stability in both solution and the solid state. The Th, U, and Pu complexes were structurally elucidated by single-crystal X-ray diffraction and shown to be isostructural in space group C2/c. Analysis of the bond lengths reveals shortening of the An-O and An-N distances arising from the actinide contraction upon moving from 1 to 2. The shortening is more pronounced upon moving from 2 to 4, and the steric constraints of the tetrakis complexes appear to prevent the enhanced U-O versus Pu-O orbital interactions previously observed in the comparison of UI(2)((Ar)acnac)(2) and PuI(2)((Ar)acnac)(2) bis-complexes. Computational analysis of models for 1, 2, and 4 (1a, 2a, and 4a, respectively) concludes that both the An-O and the An-N bonds are predominantly ionic for all three molecules, with the An-O bonds being slightly more covalent. Molecular orbital energy level diagrams indicate the largest 5f-ligand orbital mixing for 4a (Pu), but spatial overlap considerations do not lead to the conclusion that this implies significantly greater covalency in the Pu-ligand bonding. QTAIM bond critical point data suggest that both U-O/U-N and Pu-O/Pu-N are marginally more covalent than the Th analogues.  相似文献   

6.
The geometries, metal-ligand bond dissociation energies, and heats of formation of twenty sandwich and half-sandwich complexes of the main-group elements of Groups 1, 2, 13, and 14, and Zn have been calculated with quantum chemical methods. The geometries of the [E(Cp)] and [E(Cp)2] complexes were optimized using density functional theory at the BP86 level with valence basis sets, which have DZP and TZP quality. Improved energy values have been obtained by using coupled-cluster theory at the CCSD(T) level. The nature of the metal-ligand bonding has been analyzed with an energy-partitioning method. The results give quantitative information about the strength of the covalent and electrostatic interactions between En+ and (Cp-)n (n = 1, 2). The contributions of the orbitals with different symmetry to the covalent bonding are also given.  相似文献   

7.
闵新民 《化学学报》1992,50(11):1098-1104
用SCF-Xa-SW方法非相对论和相对论方案计算了Cp~aYb C~2H~2和Cp~2Yb(OC)~2.非相对论主HOMO是Cp的π轨道,相对论间接效应的作用,使得Yb的4f轨道能级上升为HOMO,相对论结果与Yb二价化合物不稳定、易氧化的实验结果一致,也表明了研究重稀土化合物考虑相对论效应的必要性.计算共价键强度与Cp~2Yb相近,比YbF~3和Cp~3SM弱,再次表明二价稀土化合共价键比三价化合物弱.同时也证实了σ型配体(CO)与稀土元素的配 位作用比π型配体(C~2H~2)强的结论.  相似文献   

8.
Textbooks of inorganic chemistry describe the formation of adducts by coordination of an electron donor to an electron acceptor, often using the amine-boranes, X3N → BY3, as examples. In the Lewis (electron dot) formulas of the compounds, the dative bond in H 3 N → BH3 and the covalent bond in H3C?CH3 are both represented by a shared electron pair. In the simple molecular orbital or valence bond models the wave functions of both electron pairs would be constructed in the same manner from the appropriate sp3 type atomic orbitals on the bonded atoms; the difference between the covalent and the dative bond becomes apparent only after the orbital coefficients have been analyzed. This may be the reason why many structural chemists seem reluctant to distinguish between the two types of bonds. The object of this article is to remind the reader that the physiocochemical properties of covalent and dative bonds may be – and often are – quite different, and to show that a distinction between the two provides a basis for understanding the structures of a wide range of main group metal compounds.  相似文献   

9.
结合改进的重叠模型Xa-SW法和Ziegler过渡态法,通过将中心原子与配体的作用选成离子聚集、中心原子只有s和p轨道参与成键、中心原子只有d轨道参与成键、中心原子只有f轨道参与成键、中心原子的s、p、d和f轨道同时参与成键5种类型,从能量角度分析了Ce(C_8H_8)_2和Ce(C_8H_8)~-_2的化学键性质。  相似文献   

10.
The molecular structures of dimethylamino[(dimethylboryl)methylamino]methylborane, Me2NBMeNMeBMe2 (1) and 1,1-bis(dimethylboryl)-2,2-dimethylhydrazine, (Me2B)2NNMe2 (2) have been determined by gas electron diffraction (GED), density functional theory calculations at the B3PW91/6-311++G** level and ab initio calculations at the MP2/6-311++G** level. 1 adopts an open structure similar to that of the isoelectronic hydrocarbon molecule permethylbutadiene; the central B-N bond distance at 148.0/149.3(7) pm (MP2/GED) corresponds to a single covalent N--B bond distance, the two terminal distances, 140.9/140.5(4) pm and 141.8/141.3(4) pm, correspond to the distance between N and B atoms joined by a covalent sigma-bond and a dative pi-bond. A closed form where the establishment of a dative bond between the terminal N and B atoms has led to the formation of a four-membered ring also corresponds to a minimum on the potential energy surface, but the energy is calculated to be 14.3 kJ mol(-1) higher at the MP2 level. This structure is also incompatible with the GED data. 2 adopts a structure in which a dative sigma-bond between the dimethylamino N atom and one of the boron atoms has led to the formation of a three-membered N(2)B ring. The dative sigma-bond distance is 165.5/164.0(13) pm, the two other bond distances in the ring are N-B=150.6/148.9(9) pm corresponding to a covalent sigma-bond and N-N=145.1/145.4(3) pm. The terminal B--N distance 139.6/138.9(9) pm is consistent with a covalent sigma-bond augmented by a dative pi-bond. An open Y-shaped structure also corresponds to a minimum on the potential energy surface, but the energy is 18.7 kJ mol(-1) higher (MP2) and it is incompatible with the GED data.  相似文献   

11.
A heterobimetallic complex with the first unsupported bond between an actinide and a group 13 element, (CpSiMe3)3U-AlCp* (Cp* = C5Me5) (1), was synthesized by reaction of (CpSiMe3)3U and 1/4(Cp*Al)4 in toluene. Density functional theory calculations indicate that the U-Al bond exhibits some covalent character resulting from a Cp*Al-->U charge-transfer.  相似文献   

12.
The elusive phosphinidene-chlorotetrylenes, [PGeCl] and [PSiCl] have been stabilized by the hetero-bileptic cyclic alkyl(amino) carbene (cAAC), N-heterocyclic carbene (NHC) ligands, and isolated in the solid state at room temperature as the first neutral monomeric species of this class with the general formulae (L)P-ECl(L′) (E=Ge, 3 a – 3 c ; E=Si, 6 ; L=cAAC; L′=NHC). Compounds 3 a – 3 c have been synthesized by the reaction of cAAC-supported potassium phosphinidenides [cAAC=PK(THF)x]n ( 1 a – 1 c ) with the adduct NHC:→GeCl2 ( 2 ). Similarly, compound 6 has been synthesized via reaction of 1 a with NHC:→SiCl2 adduct ( 4 ). Compounds 3 a – 3 c , and 6 have been structurally characterized by single-crystal X-ray diffraction, NMR spectroscopy and mass spectrometric analysis. DFT calculations revealed that the heteroatom P in 3 bears two lone pairs; the non-bonding pair with 67.8 % of s- and 32 % of p character, whereas the other lone pair is involved in π backdonation to the CcAAC-N π* of cAAC. The Ge atom in 3 contains a lone pair with 80 % of s character, and slightly involved in the π backdonation to CNHC. EDA-NOCV analyses showed that two charged doublet fragments {(cAAC)(NHC)}+, and {PGeCl} prefer to form one covalent electron-sharing σ bond, one dative σ bond, one dative π bond, and a charge polarized weak π bond. The covalent electron-sharing σ bond contributes to the major stabilization energy to the total orbital interaction energy of 3 , enabling the first successful isolations of this class of compounds ( 3 , 6 ) in the laboratory.  相似文献   

13.
A combined experimental and theoretical study of the paramagnetic [Co(II)(C12H20N8)(H2O)2] x 2 ClO4 complex was made on the basis of the electron density distribution and topological analysis. Accurate single-crystal diffraction data were measured on a suitable crystal with Mo(K alpha) radiation at 125 K. The CoII ion is coordinated in a square bipyramidal fashion with four imino nitrogen atoms at the equatorial plane and two water molecules at the axial positions. The hydrogen-bonding interaction at 125 K between the coordinated water molecule and the ClO(4)(-) ion makes the space group different from that at 298 K. Parallel MO calculations were made at UHF and DFT/UB3LYP. The agreement between experiment and theory is reasonably good. The chemical bonding characterization is presented in terms of the topological properties associated with bond critical points and the natural bond orbital (NBO) analysis as well. The Co-N(imino) and Co-O(water) bonds are dative bonds, where the lone-pair electrons of N or O serve as a -donor; however, a certain covalent character is identified in the Co-N(imino) bond. A delocalized C-N, N-N pi-bond model is proposed. The d-orbital energies of Co in this complex are such that E(d(xz)) is approximately equal to E(d(yz)) is approximately equal to E(dx(2-y2)) < E(d(z2)) < E(d(xy)); notice that d(xy) and d(z2) are d(sigma) orbitals in this case. The Co(II) ion is in a low-spin d7 state with the singly occupied d(z2) orbital. The asphericity in electron density at Co and Cl nuclei is nicely demonstrated by the Laplacian of electron density. The envelope plot of the isovalue Laplacian surface around the nucleus gives the exact shape of such asphericity. The isovalue Laplacian surfaces of these two nuclei show significantly different VSCC character in both experimental and theoretical results.  相似文献   

14.
Density functional calculations were performed on a series of mixed-ligand organolanthanide complexes, (η5-C5H5)2LnX·OC4H85-C5H5=Cp; Ln=La-Lu; X=F, Cl, Br and I; OC4H8=THF). The calculated geometrical parameters are in reasonable agreement with the experimental data. The distances between Ln and ligands follow linearity along the ionic radius of lanthanide metal, as the same as that observed in experiment. In the mixed-ligand complexes, Ln-Cp and Ln-THF bonds are more covalent compared to Ln-X. The lanthanide contraction of various bond and the metal-ligand interaction energy followed the order of Ln-X>Ln-Cp>Ln-OC4H8. The orbital population and dipole moment were also discussed.  相似文献   

15.
In this article, the coordination mode, the nature of metal–ligand interaction and dimetallic bonding in heteronuclear group‐13 dimetallocene (CpMM′CpI2; Cp = C5H5, M/M′=B, Al, Ga, In, and Tl) have been investigated within the framework of the atoms in molecules theory, electron localization function, and energy decomposition analysis. The calculated results show that the symmetries of the title compounds, the coordination modes between the metal and ligand, the strength and nature of M‐ligand interaction and M M′ bond are well correlated with the periodicity changing of group‐13 metal atom going from the lighter to the heavier (B, Al, Ga, In, and Tl). The heavier group 13 metal atom is corresponding to the higher symmetry, stronger metal–ligand interaction, and weaker dimetallic bond. The covalent characters of both metal–ligand interaction and dimetallic bond are decreasing in the sequence of M′=Al, Ga, In, and Tl, for the same M atom.  相似文献   

16.
在研究闭式多面体(HAlNH)12簇合物几何构型及稳定性的基础上, 用DFT的B3LYP方法在6-31G(d)的水平上, 对其内含式复合物X@(HAlNH)12 (X= Be, Mg, Ca, Zn, Al+, Ga+)进行了构型优化和能量计算, 并讨论了稳定结构的几何构型、自然键轨道(NBO)、振动频率、能量参数及NMR数据与结构的关系. 用Gaussian 03的QST3方法确定了客体X通过笼面6-元环的迁移过渡态(TS)结构, 并用IRC方法对所得TS结构进行了验证. 最后得到内含式复合物X@(HAlNH)12结构在热力学和动力学上的稳定性信息, 其中复合物Ga+@(HAlNH)12的结构相对最稳定.  相似文献   

17.
Quantum chemical calculations at the BP86 level with various basis sets (SVP, TZVPP, and TZ2P+) were carried out for the Fe(CO)4 of group‐13 half‐sandwich ECp* [Fe(CO)4ECp*] ( Fe4‐E ) (E = B to Tl). The chemical bonding of the Fe(CO)4ECp* bond was analyzed with charge‐ and energy decomposition methods. The calculated equilibrium structures of complexes Fe4‐E show that the ligands ECp* are bonded in an end‐on way to the fragment Fe(CO)4 in Fe4‐E with E = B to Ga. The compound Fe4‐In has a distorted end‐on ligand InCp*. In contrast, Fe4‐Tl has a side‐on bonded ligand TlCp*. The calculated bond dissociation energies (BDEs) suggest that the bond in the iron group‐13 half‐sandwich complexes Fe4‐E decreases from Fe4‐B to Fe4‐Tl . Natural bond orbital (NBO) analysis of the bonding situation reveals that the Fe(CO)4ECp* donation in Fe4‐E comes from the σ lone‐pair orbital of ECp*. Bonding analysis indicates that the ligand ECp* in complexes are strong σ donors and the NOCV pairs of the bonding show small π‐back donation from the Fe(CO)4 to the ECp* ligands.  相似文献   

18.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

19.
The R(5)Ga(3) (R = Sc, Y, Ho, Er, Tm, Lu) phases were prepared by high-temperature solid-state techniques. The structure of monoclinic Sc(5)Ga(3) was determined by single-crystal X-ray diffraction means (C2/m, No. 12, Z = 4, a = 8.0793(5) A, b = 14.003(1) A, c = 5.9297(3) A, beta = 90.994(5) degrees ), and those of the isotypic R(5)Ga(3), R = Y, Ho, Er, Tm, Lu, were determined by Guinier powder diffraction. The new Sc(5)Ga(3) structure is a deformation of the hexagonal Mn(5)Si(3) type (P6(3)/mcm) and contains two types of gallium dimers with d(Ga-Ga) = 2.91 and 3.14 A. The closely spaced Sc1 chains in the parent Mn(5)Si(3) type transform to zigzag chains in concert with displacements of the uniformly spaced gallium atoms to form dimers within distorted confacial square antiprisms of Sc. Matrix effects appear important in the different Ga(2) bond lengths. Electronic calculations reveal that the transformation from the hypothetical Mn(5)Si(3) to the Sc(5)Ga(3) type is aided by antibonding Ga-Ga interactions between the dimers that are pushed above E(F) and Ga-Ga and Ga-Sc bonding states just below E(F) that are stabilized. Sc(5)Ga(3) is appropriately metallic. Except for R = Sc, Lu, the arc-melted R(5)Ga(3) compounds above slowly transform on annealing at 1150 degrees C and below into tetragonal Ba(5)Si(3)-type structures.  相似文献   

20.
Ligands with 1,1′-bis(donor)ferrocene motif are capable of a wide range of binding modes, including the trans chelation mode in which there is a Fe−M interaction (κ3-D,Fe,D), in the form of a dative Fe→TM bond (TM=transition metal). This Minireview will explore the nature of this Fe–TM interaction thorough select examples as well as how to characterize a Fe→TM dative bond using physical, computational, and spectroscopic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号