首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Highly uniform, core-shell microgels consisting of single gold nanoparticle cores and cross-linked poly-N-isopropylacrylamide (PNIPAM) shells were prepared by a novel, versatile protocol. The synthetic pathway allows control over the polymer shell thickness and its swelling behavior. The core-shell structure was investigated by electron microscopy and atomic force microscopy, whereas the swelling behavior of the shell was studied by means of dynamic light scattering and UV-vis spectroscopy. Furthermore, the latter method was used to investigate the optical properties of the hybrid particles. By modeling the scattering contribution from the PNIPAM shells, the absorption spectra of the gold nanoparticle cores could be recovered. This allows the particle concentration to be determined, and this in turn permits the calculation of the molar mass of the hybrid particles as well as the refractive index of the shells.  相似文献   

2.
Silica-metal nanostructures consisting of silica cores and metal nanoshells attract a lot of attention because of their unique properties and potential applications ranging from catalysis and biosensing to optical devices and medicine. The important feature of these nanostructures is the possibility of controlling their properties by the variation of their geometry, shell morphology and shell material. This review is devoted to silica-noble metal core-shell nanostructures; specifically, it outlines the main methods used for the preparation and surface modification of silica particles and presents the major strategies for the formation of metal nanoshells on the modified silica particles. A special emphasis is given to the St?ber method, which is relatively simple, effective and well verified for the synthesis of large and highly uniform silica particles (with diameters from 100 nm to a few microns). Next, the surface chemistry of these particles is discussed with a special focus on the attachment of specific organic groups such as aminopropyl or mercaptopropyl groups, which interact strongly with metal species. Finally, the synthesis, characterization and application of various silica-metal core-shell nanostructures are reviewed, especially in relation to the siliceous cores with gold or silver nanoshells. Nowadays, gold is most often used metal for the formation of nanoshells due to its beneficial properties for many applications. However, other metals such as silver, platinum, palladium, nickel and copper were also used for fabrication of core-shell nanostructures. Silica-metal nanostructures can be prepared using various methods, for instance, (i) growth of metal nanoshells on the siliceous cores with deposited metal nanoparticles, (ii) reduction of metal species accompanied by precipitation of metal nanoparticles on the modified silica cores, and (iii) formation of metal nanoshells under ultrasonic conditions. A special emphasis is given to the seed-mediated growth, where metal nanoshells are formed on the modified silica cores with deposited metal nanoparticles. This strategy assures a good control of the nanoshell thickness as well as its surface properties.  相似文献   

3.
This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the St?ber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.  相似文献   

4.
We report novel thermosensitive hybrid core-shell particles via in situ gold nanoparticle formation using thermosensitive core-shell particles as a template. This method for the in situ synthesis of gold nanoparticles with microgel interiors offers the advantage of eliminating or significantly reducing particle aggregation. In addition, by using thermosensitive microgel structures in which the shell has thermosensitive and gel properties in water--whereas the core itself is a water-insoluble polymer--we were able to synthesize the gold nanoparticles only at the surface of the core, which had reactive sites to bind metal ions. After the gold nanoparticles were synthesized, electroless gold plating was carried out to control the thickness of the gold nanoshells. The dispersions of the obtained hybrid particles were characterized by dynamic light scattering and UV-vis absorption spectroscopy, and the dried particles were also observed by electron microscopy. Adaptation of the technique shown here will create a number of applications as optical, electronic, and biomedical functional materials.  相似文献   

5.
Gold nanoparticles have been conformally coated with amorphous silica (using a sol-gel method) and then an organic polymer (via surface-grafted, atom transfer radical polymerization) to form spherical colloids with a core-double-shell structure. The thickness of silica and polymer shells could be conveniently controlled in the range of tens to several hundred nanometers by changing the concentration of the reagent and/or the reaction time. Selective removal of the silica layer (through etching in aqueous HF) led to the formation of hollow polymer beads containing movable gold cores. This new form of core-shell particles provides a unique system for measuring the feature size and transport property associated with hollow particles. In one demonstration, we showed that the thickness of a closed polymer shell could be obtained by mapping the electrons backscattered from the core and shell. In another demonstration, the plasmon resonance band of the gold cores was used as an optical probe to follow the diffusion kinetics of chemical reagents across the polymer shells.  相似文献   

6.
Many types of colloidal particles possess a core-shell morphology. In this Article, we show that, if the core and shell densities differ, this morphology leads to an inherent density distribution for particles of finite polydispersity. If the shell is denser than the core, this density distribution implies an artificial narrowing of the particle size distribution as determined by disk centrifuge photosedimentometry (DCP). In the specific case of polystyrene/silica nanocomposite particles, which consist of a polystyrene core coated with a monolayer shell of silica nanoparticles, we demonstrate that the particle density distribution can be determined by analytical ultracentrifugation and introduce a mathematical method to account for this density distribution by reanalyzing the raw DCP data. Using the mean silica packing density calculated from small-angle X-ray scattering, the real particle density can be calculated for each data point. The corrected DCP particle size distribution is both broader and more consistent with particle size distributions reported for the same polystyrene/silica nanocomposite sample using other sizing techniques, such as electron microscopy, laser light diffraction, and dynamic light scattering. Artifactual narrowing of the size distribution is also likely to occur for many other polymer/inorganic nanocomposite particles comprising a low-density core of variable dimensions coated with a high-density shell of constant thickness, or for core-shell latexes where the shell is continuous rather than particulate in nature.  相似文献   

7.
A novel method for the synthesis of luminescent SiO(2)/calcium phosphate (CaP):Eu(3+) core-shell nanoparticles (NPs) was developed via a sol-gel route followed by annealing at a temperature of 800 °C. The object of this study was the investigation of the effect of pH on the formation of a CaP shell around the silica core. The resulting annealed NPs exhibited an amorphous SiO(2) core and a crystalline luminescent shell. The formation of a CaP layer was possible at pH below 4.5 and above 6.5 during the coating step. The crystal structure of the shell was studied by X-ray diffraction analysis. Hydroxyapatite (HAp) and α-tricalcium phosphate were detected as crystal phases of the surrounding layer. However, NPs produced under basic conditions exhibited a higher crystallinity of the CaP layer than did samples coated at pH below 4.5. In the pH interval between 4.5 and 6.5, no shell growth but the formation of secondary NPs containing CaO and Ca(OH)(2) was observed. Furthermore, SiO(2)/CP:Eu(3+) core-shell NPs were investigated by transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, inductively coupled plasma optical emission spectrometry, and photoluminescence spectroscopy. The resulting HAp-coated NPs were successfully tested by a cell-culture-based viability assay with respect to a later application as a luminescent marker for biomedical applications.  相似文献   

8.
A preparation method for multilayered gold-silica-polystyrene core-shell composite particles is proposed. The gold-silica core-shell particles of 192-nm-sized, synthesized by coating the 18-nm-sized gold particles with silica by a seeded growth technique, were used as cores for succeeding polystyrene coating. After surface modification of gold-silica composite particles by methacryloxypropyltrimethoxysilane (MPTMS), polymerizations of styrene (0.16-0.4 M) were conducted with 8 x 10(-3) M of potassium persulfate initiator in the presence of 1 x 10(-3) M of sodium p-styrenesulfonate anionic monomer. Multilayered core-shell gold-silica-polystyrene particles that contained a single core could be obtained. The coefficient of variation of size distribution (CV) of the composite particles was less than 7%, and polystyrene shell thickness was in a range of 193 to 281 nm.  相似文献   

9.
The size and concentration of silica cores determine the size and concentration of silica/gold nanoshells in final preparations. Until now, the concentration of silica/gold nanoshells with Stober's silica core has been evaluated through the material balance assumption. Here, we describe a method for simultaneous determination of the average size and concentration of silica nanospheres from turbidity spectra measured within the 400-600 nm spectral band. As the refractive index of silica nanoparticles is the key input parameter for optical determination of their concentration, we propose an optical method and provide experimental data on a direct determination of the refractive index of silica particles n = 1.475 +/- 0.005. Finally, we exemplify our method by determining the particle size and concentration for 10 samples and compare the results with transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering data.  相似文献   

10.
单分散聚丙烯酸丁酯-二氧化硅核壳粒子的制备   总被引:3,自引:0,他引:3  
近年来,有机-无机核壳材料因其具有可调的光、电、磁等特性而备受关注.无机物外壳可以增强粒子的热力学稳定性、机械强度和抗拉性能.高分子乳胶粒内核具有弹性,且易成膜,外部包覆无机物的乳胶粒可结合两者特性并产生协同效应.  相似文献   

11.
This work describes a novel and scalable colloid chemistry strategy to fabricate gold semishells based on the selective growth of gold on Janus silica particles (500 nm in diameter) partly functionalized with amino groups. The modulation of the geometry of the Janus silica particles allows us to tune the final morphology of the gold semishells. This method also provides a route to fabricating hollow gold semishells through etching of the silica cores with hydrofluoric acid. The optical properties were characterized by visible near-infrared (vis-NIR) spectroscopy and compared with simulations performed using the boundary element method (BEM). These revealed that the main optical features are located beyond the NIR region because of the large core size.  相似文献   

12.
用改进的Stöber法和无皂乳液聚合法制备窄分布的二氧化硅/PMMA核-壳纳米微球. 用改进的Stöber法将3-乙氧基甲基丙烯酸丙基硅烷(MPS)修饰在纳米的二氧化硅表面后, 用无皂乳液聚合法制备核-壳纳米微球. 该法简单有效且得到厚度均匀的聚合物包覆层. 随着单体MMA用量的增加, 用动态光散射法测量, PMMA壳层的厚度从6.4 nm增加到96.3 nm. 热重分析表明, PMMA的含量从22.25%增加到93.41%. 扫描电子显微镜和透射电子显微镜结果表明, 得到的是包覆良好、表面光滑的核-壳无机/聚合物纳米微球.  相似文献   

13.
Core-shell microgels made of the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM) and silica nanoparticles as inorganic cores were investigated by dynamic light scattering (DLS) and small angle neutron scattering (SANS). In order to study the response of the particles upon changes of temperature, experiments were done in a temperature interval close to the volume phase transition temperature of the PNIPAM shell. While DLS probes the hydrodynamic dimensions of the particles, determining their centre of mass diffusion, SANS provides the correlation length xi of the PNIPAM network. Additionally, the composite particles were characterised by electron microscopy as well as atomic force microscopy to reveal the core-shell structure and at the same time the approximate dimensions and the shape of the microgels.  相似文献   

14.
A two-population model based on standard small-angle X-ray scattering (SAXS) equations is verified for the analysis of core-shell structures comprising spherical colloidal particles with particulate shells. First, Monte Carlo simulations of core-shell structures are performed to demonstrate the applicability of the model. Three possible shell packings are considered: ordered silica shells due to either charge-dependent repulsive or size-dependent Lennard-Jones interactions or randomly arranged silica particles. In most cases, the two-population model produces an excellent fit to calculated SAXS patterns for the simulated core-shell structures, together with a good correlation between the fitting parameters and structural parameters used for the simulation. The limits of application are discussed, and then, this two-population model is applied to the analysis of well-defined core-shell vinyl polymer/silica nanocomposite particles, where the shell comprises a monolayer of spherical silica nanoparticles. Comprehensive SAXS analysis of a series of poly(styrene-co-n-butyl acrylate)/silica colloidal nanocomposite particles (prepared by the in situ emulsion copolymerization of styrene and n-butyl acrylate in the presence of a glycerol-functionalized silica sol) allows the overall core-shell particle diameter, the copolymer latex core diameter and polydispersity, the mean silica shell thickness, the mean silica diameter and polydispersity, the volume fractions of the two components, the silica packing density, and the silica shell structure to be obtained. These experimental SAXS results are consistent with electron microscopy, dynamic light scattering, thermogravimetry, helium pycnometry, and BET surface area studies. The high electron density contrast between the (co)polymer and the silica components, together with the relatively low polydispersity of these core-shell nanocomposite particles, makes SAXS ideally suited for the characterization of this system. Moreover, these results can be generalized for other types of core-shell colloidal particles.  相似文献   

15.
Hollow and core-shell rutile particles were synthesized, and their opacifying power in a cellulose matrix was compared with that of commercial solid rutile particles. It was found that the opacifying power of hollow polycrystalline rutile particles was superior to that of a commercial rutile pigment in a highly pressed bleached fiber matrix, depending on cavity size, whereas the opacifying power of silica-rutile titania core-shell particles was found comparable to that of commercial rutile at constant titania loading. The light scattering efficiency of titania core-shell particles was also shown to be dependent on the light scattering efficiency of the core material. The light scattering efficiency of the polycrystalline silica cores was found to depend on calcination temperature and crystal structure.  相似文献   

16.
We report on the size dependence of the melting temperature of silica-encapsulated gold nanoparticles. The melting point was determined using differential thermal analysis (DTA) coupled to thermal gravimetric analysis (TGA) techniques. The small gold particles, with sizes ranging from 1.5 to 20 nm, were synthesized using radiolytic and chemical reduction procedures and then coated with porous silica shells to isolate the particles from one another. The resulting silica-encapsulated gold particles show clear melting endotherms in the DTA scan with no accompanying weight loss of the material in the TGA examination. The silica shell acts as a nanocrucible for the melting gold with little effect on the melting temperature itself, even though the analytical procedure destroys the particles once they melt. Phenomenological thermodynamic predictions of the size dependence of the melting point of gold agree with the experimental observation. Implications of these observations to the self-diffusion coefficient of gold in the nanoparticles are discussed, especially as they relate to the spontaneous alloying of core-shell bimetallic particles.  相似文献   

17.
Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles   总被引:2,自引:0,他引:2  
The microwave-assisted polyol reduction method was applied to the synthesis of core-shell gold/palladium bimetallic nanoparticles by the simultaneous reduction of the AuIII and PdII ions. The thickness of the palladium shell was calculated to be approximately 3 nm, and the gold core diameter is 9 nm. The structure and composition of the bimetallic particles were characterized by high-resolution transmission electron microscopy equipped with a nanoarea energy-dispersive X-ray spectroscopy attachment, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy.  相似文献   

18.
Silica-metal core–shell particles, as for instance those having siliceous core and nanostructured gold shell, attracted a lot of attention because of their unique properties resulting from combination of mechanical and thermal stability of silica and magnetic, electric, optical and catalytic properties of metal nanocrystals such as gold, silver, platinum and palladium. Often, the shell of the core–shell particles consists of a large number of metal nanoparticles deposited on the surface of relatively large silica particles, which is the case considered in this work. Namely, silica particles having size of about 600 nm were subjected to surface modification with 3-aminopropyltrimethoxysilane. This modification altered the surface properties of silica particles, which was demonstrated by low pressure nitrogen adsorption at ?196 °C. Next, gold nanoparticles were deposited on the surface of aminopropyl-modified silica particles using two strategies: (i) direct deposition of gold nanoparticles having size of about 10 nm, and (ii) formation of gold nanoparticles by adsorption of tetrachloroauric acid on aminopropyl groups followed by its reduction with formaldehyde.The overall morphology of silica–gold particles and the distribution of gold nanoparticles on the surface of modified silica colloids were characterized by scanning electron microscopy. It was shown that direct deposition of colloidal gold on the surface of large silica particles gives more regular distribution of gold nanopartciles than that obtained by reduction of tetrachloroauric acid. In the latter case the gold layer consists of larger nanoparticles (size of about 50 nm) and is less regular. Note that both deposition strategies afforded silica–gold particles having siliceous cores covered with shells consisting of gold nanoparticles of tunable concentration.  相似文献   

19.
Gold nanoparticles prepared through a conventional citrate-reduction method were directly coated with silica by means of a seeded polymerization technique based on the St?ber method. The method required no surface modification. The addition of tetraethylorthosilicate and water prior to ammonia was found to be critical to obtain a proper coating. The silica shell thickness was varied from 30 to 90 nm for TEOS concentrations of 0.0005-0.02 M at 10.9 M of water and 0.4 M of ammonia. The optical spectra of the core-shell gold-silica composite particles agreed with predictions of Mie theory.  相似文献   

20.
This paper describes the homogeneous growth of gold shells on the surfaces of spherical dielectric silica nanoparticle cores by two different approaches: common two-step method (the name) and deposition–precipitation process. The methods basically are different in forming the precursor gold seed particles on silica. The structural and optical properties and morphology of the nanoparticles were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV–Vis spectrophotometery, and photo luminescence spectroscopy (PL). The results showed that, although in both the methods the core–shell nanoparticles can be reliably prepared in a controlled fashion with a favorable uniformity, but deposition–precipitation method indicated a better mechanical stability while it was more cost and time effective too. A regular red shift, from 488 to 662 nm, and peak broadening was also risen for the striking plasmon absorption peak as gold nanoseeds created by each of the two methods grew in size on silica cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号