首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of new spiro[cyclohexane-1,1'-isobenzofuran]-based compounds was synthesized by palladium(0)-catalyzed 5-exo cyclization of a series of cyclohexenyl o-halobenzyl ethers. Controlled microwave heating was found to promote both product yield and reaction rate without compromising the selectivity. Heck cyclization of aryl iodide 6, 2-(2-iodobenzyloxy)cyclohex-2-enyl acetate, proceeded selectively without involvement of the allylic acetate functionality.  相似文献   

2.
The effect of a halogen atom as a leaving group on Bu(3)SnH-mediated 5-endo-trig radical cyclization of N-(cyclohex-1-enyl) alpha-halo amides was examined. The cyclization of alpha-chloro amides occurred with a high degree of efficiency, whereas the corresponding alpha-iodo congeners gave only limited quantities of cyclization products. A detailed study revealed that these phenomena could be attributed to the initial conformations of alpha-halo amides. The cyclizing ability of alpha-iodo amides can be restored with Bu(3)SnCl or Bu(3)SnF as an additive. The cyclization of an alpha-iodo amide in the presence of Bu(3)SnF could be applied to a short-step synthesis of lycoranes featuring sequential 5-endo-trig and 6-endo-trig radical cyclizations.  相似文献   

3.
The reductive radical cyclizations of several epoxy esters have been achieved using titanocene chloride. The tether length from the initial radical to the carbonyl acceptor is the key of the reactions. We obtained products from radical cyclization onto carbonyl formate and products from formate and hydrogen elimination. The stereochemical outcome of the 5-exo radical cyclization of two diastereomers is reported. A radical cascade cyclization of an unsaturated epoxy formate is also described.  相似文献   

4.
The diastereomers of ketones 2 and 3 are shown to exhibit distinct photochemical reactivities due to conformational preferences; while the anti isomers of 2 and 3 undergo efficient Yang cyclization in 75-90% yields with a remarkable diastereoselectivity (> 90%), the syn isomers predominantly undergo Norrish Type II elimination. The differences in the product profiles of the diastereomers are consistent with a mechanistic picture involving the formation of precursor diastereomeric triplet 1,4-biradicals in which the substituents at alpha and beta-positions stabilize the cisoid (cyclization) or transoid (elimination) geometry. The fact that such a diastereomeric relationship does indeed ensue at the triplet-excited-state itself is demonstrated via the nanosecond laser-flash photolysis of model ketones 1. The diastereomeric discrimination in the product profiles observed for ketones 2 and 3 as well as in the triplet lifetimes observed for ketones 1 can both be mechanistically traced back to different conformational preferences of the ground-state diastereomeric ketones and the intermediary 1,4-biradicals. Additionally, it emerges from the present study that the syn and anti diastereomers of ketones 2 and 3 represent two extremes of a broad range of widely examined butyrophenones, which lead to varying degrees of Yang photocyclization depending on the alkyl substitution pattern.  相似文献   

5.
Palladium‐catalyzed cascade cyclization reactions have witnessed significant improvements in recent years. Among them, palladium‐catalyzed cascade cyclization/alkynylation are especially attractive, which can assemble structurally diverse monocyclic, bicyclic, fused polycyclic, and spirocyclic skeletons with excellent chemoselectivities. In this Minireview, palladium‐catalyzed cascade cyclization/alkynylation have been summarized and discussed in detail with focus on oxypalladation and aminopalladation‐initiated cascade cyclization, intramolecular Heck‐type cascade cyclization, carbocyclizations, cascade cyclizations, and other types of cascade cyclization reactions. Some significant and representative synthetic methodologies and their synthetic applications and reaction mechanisms have also been described.  相似文献   

6.
Ten acyclic and monocyclic delta,epsilon-unsaturated ketones, with and without methyl substituents on the double bond, underwent halide-terminated Prins (halo-Prins) cyclizations under anhydrous conditions in the presence of Lewis acids. TiCl4, TiBr4, BCl3, and BBr3 promoted syn-selective cyclizations to sterically congested chloro- and bromohydrins, while SnCl4, SnBr4, InCl3, ZrCl4, and several other Lewis acids effected highly anti-selective reactions to furnish the corresponding trans halohydrins. The stronger Lewis acids (TiX4 and BX3) favor the syn process that involves axial delivery of a halide ligand. Competition experiments showed that substitution at the delta carbon (methallyl enones) led to increased rates (40-50-fold), while substitution at the epsilon position (cis and trans crotyl enones) retarded the rate and eroded the selectivity of the cyclizations. The trends in syn vs anti selectivity, reactivity, and effects of different Lewis acidic metal halides are rationalized by competitive reaction pathways proceeding through syn carbocation-halide ion pairs and a higher order transition state that leads to inversion of configuration and formation of trans halohydrins, along with cyclic olefins arising from proton elimination.  相似文献   

7.
A convenient route is described for the preparation of 1,4-dimethylcarbazole — the key compound in the synthesis of the antitumoral alkaloid ellipticine. The interaction of 2,5-xylidine with 3-chlorocyclohexene led to N-(cyclohex-2-enyl)-2,5-xylidine (I), the two-hour heating of which at 140–150°C gave the product of an amino-Claisen rearrangement, 6-(cyclohex-2-enyl)-2,5-xylidine (II) with a yield of 82%. The intramolecular cyclization of compound (II) in polyphosphoric acid (130–140°C, 5 h) led to 5,6,7,8,12,13-hexahydro-1,4-dimethylcarbazole (III) in a yield of 75%. The dehydrogenation of substance (III) by boiling in trimethylbenzene in the presence of Pd/C gave 1,4-dimethylcarbazole (IV) with a yield of 87%. The conditions for performing the reactions and the physicochemical constants of the compounds obtained are given.  相似文献   

8.
The substituent effect on the reactivity and regioselectivity of N-(4-pentenyl)amidyl radical cyclization was investigated. Exclusive 6- endo cyclization was observed for N-(4-pentenyl)amidyl radicals with internal vinylic heteroatom substitution (Cl, Br, I, OMe, SEt). The substituent on the carbonyl group also showed a significant influence on the reactivity of amidyl radicals, which increases in the order of Ph < Me < OEt. As a result, the photostimulated reactions of N-(4-halopent-4-enyl)amides and carbamates (X = Cl, Br, I) with DIB/I 2 or Pb(OAc) 4/I 2 led to the efficient and exclusive formation of the corresponding piperidines while those of N-(5-halopent-4-enyl)amides afforded the pyrrolidine products only. The halogen-substitution effect also allowed the 6- exo and 7- endo amidyl radical cyclization to proceed in a highly regioselective manner. The above experimental results, in combination with theoretical analyses, revealed that the lone pair-lone pair repulsion between the nitrogen radical and the vinylic heteroatom played an important role in controlling the regioselectivity of cyclization.  相似文献   

9.
A practical sequence involving three consecutive palladium(0)-catalyzed reactions has been developed for synthesizing 3-alkyl-3-aryloxindoles in high enantiopurity. The Heck cyclization precursors 10 and 11a-k are generated in one step by chemoselective Stille cross-coupling of 2'-triflato-(Z)-2-stannyl-2-butenanilide 9 with aryl or heteroaryl iodides. The pivotal catalytic asymmetric Heck cyclization step of this sequence takes place in high yield and with high enantioselectivity (71-98% ee) with the Pd-BINAP catalyst derived from Pd(OAc)(2) to construct oxindoles containing a diaryl-substituted all-carbon quaternary carbon center. A wide variety of aryl and heteroaryl substituents, including ones of considerable steric bulk, can be introduced at C3 of oxindoles in this way (Table 4). The only limitations encountered to date are aryl substituents containing ortho nitro or basic amine functionalities and the bulky N-alkyl-7-oxindolyl group. Asymmetric Heck cyclization of butenalide 22 having an o-(N-acetyl-N-benzylamino)phenyl substituent at C2 provided a approximately 1:1 mixture of amide atropisomers 23 and 24 in high yield and high enantioselectivity. These atropisomers are formed directly upon Heck cyclization of 22 at 80 degrees C, as they interconvert thermally to only a small extent at this temperature.  相似文献   

10.
Atom transfer radical cyclization reactions of N-(4-pentenyl)iodoacetamides were investigated. The reactions were efficiently promoted by BF3.OEt2. For N-alkenyl-substituted iodoamides, excellent regioselectivity in favor of 8-endo cyclization was observed, while both 7-exo and 8-endo cyclization products were formed with the 8-endo cyclization preferred in the cases of N-(2-allylphenyl)-substituted iodoamides. Density functional theory calculations at the B3LYP/6-31G level revealed that both the s-trans and the s-cis conformational transition structures were feasible for the 8-endo cyclization of N-alkenyl-substituted alpha-carbamoyl radicals while 7-exo transition structures were much less stable. For the cyclization of N-(2-allylphenyl)-substituted alpha-carbamoyl radicals, the transition structures for 8-endo and 7-exo cyclizations were of comparable energy. These results were in excellent agreement with the experimental observations.  相似文献   

11.
Oxidative cyclizations of a variety of heteroatom nucleophiles onto unactivated olefins are catalyzed by palladium(II) and pyridine in the presence of molecular oxygen as the sole stoichiometric oxidant in a nonpolar solvent (toluene). Reactivity studies of a number of N-ligated palladium complexes show that chelating ligands slow the reaction. Nearly identical conditions are applicable to five different types of nucleophiles: phenols, primary alcohols, carboxylic acids, a vinylogous acid, and amides. Electron-rich phenols are excellent substrates, and multiple olefin substitution patterns are tolerated. Primary alcohols undergo oxidative cyclization without significant oxidation to the aldehyde, a fact that illustrates the range of reactivity available from various Pd(II) salts under differing conditions. Alcohols can form both fused and spirocyclic ring systems, depending on the position of the olefin relative to the tethered alcohol; the same is true of the acid derivatives. The racemic conditions served as a platform for the development of an enantioselective reaction. Experiments with stereospecifically deuterated primary alcohol substrates rule out a "Wacker-type" mechanism involving anti oxypalladation and suggest that the reaction proceeds by syn oxypalladation for both mono- and bidentate ligands. In contrast, cyclizations of deuterium-labeled carboxylic acid substrates undergo anti oxypalladation.  相似文献   

12.
The product ion formation characteristics of the four diastereomeric tetrahydroxy benzo[ghi]fluoranthene compounds formed by hydrolysis of the syn and anti diastereomers of trans-3,4-dihydroxy-5,5a-epoxy-3,4,5,5a-tetrahydrobenzo[ghi]fluoranthene are studied using matrix-assisted laser desorption/ionization and post-source decay (PSD) to determine a correlation between the fragmentation characteristics of these tetraols and the structures of the diol-epoxide diastereomers from which they are hydrolyzed. The tetraols formed by the trans ring opening of the diol epoxides during hydrolysis yield product ion spectra specific for the syn and anti configurations of their precursor diol epoxides. All four diastereomeric tetraols form product ions by the losses of one and/or two water molecules in varying proportions when lithium-cationized molecule ions (m/z 301) are selected for PSD product ion analysis. The differences in the PSD spectra of these four Li+-cationized molecules are rationalized in terms of a water loss mechanism that involves the 1,2 elimination of a hydrogen atom and hydroxyl group that are cis with respect to each other on adjacent carbons.  相似文献   

13.
A convenient route is described for the preparation of 1,4-dimethylcarbazole — the key compound in the synthesis of the antitumoral alkaloid ellipticine. The interaction of 2,5-xylidine with 3-chlorocyclohexene led to N-(cyclohex-2-enyl)-2,5-xylidine (I), the two-hour heating of which at 140–150°C gave the product of an amino-Claisen rearrangement, 6-(cyclohex-2-enyl)-2,5-xylidine (II) with a yield of 82%. The intramolecular cyclization of compound (II) in polyphosphoric acid (130–140°C, 5 h) led to 5,6,7,8,12,13-hexahydro-1,4-dimethylcarbazole (III) in a yield of 75%. The dehydrogenation of substance (III) by boiling in trimethylbenzene in the presence of Pd/C gave 1,4-dimethylcarbazole (IV) with a yield of 87%. The conditions for performing the reactions and the physicochemical constants of the compounds obtained are given.Institute of Chemistry, Bashkir Scientific Center, Urals Branch, USSR Academy of Sciences, Ufa. Translated from Khimiya Prirodnykh Soedinenii, Vol. 6, pp. 816–818, November–December, 1989.  相似文献   

14.
The PN(2)S chelate N-[N-(3-diphenylphosphinopropionyl)glycyl]-S-tritylcysteine methyl ester [PN(2)S(Trt)-OMe] was synthesized and reacted with ReOCl(3)(PPh(3))(2) and Ph(4)P[ReOCl(4)]. The reactions of both tritylated and detritylated ligands with Re(V)O precursors gave two diastereomers, 9a and 9b, of the ReO(PN(2)S-OMe) complex. The two isomers, produced in a 1:1 molar ratio, are stable and do not interconvert. They were separated by reverse-phase HPLC and characterized by NMR, FT-IR, and UV-visible spectroscopy and electrospray mass spectrometry. X-ray analysis established for 9a the presence in the solid of the syn isomer. Compound 9a, C(21)H(23)N(2)O(5)PSRe, crystallized from warm acetonitrile in the triclinic space group Ponemacr;, a = 9.828(2) A, b = 11.163(2) A, c = 11.641(2) A, alpha = 106.48(3) degrees, beta = 109.06(3) degrees, gamma = 102.81(3) degrees, V = 1085.7(4) A(3), Z = 2. The PN(2)S coordination set is in the equatorial plane, and the complex shows a distorted square pyramidal coordination. The anti configuration assigned to 9b is consistent with all the available physicochemical data. Follow-up of the reaction of the detritylated ligand with Ph(4)P[ReOCl(4)] in ethanol or acetonitrile indicated that the phosphorus atom of the chelate binds first to the metal and that this bond acts as the driving force for coordination.  相似文献   

15.
Three pathways actually compete in metal-catalyzed cyclizations of enynes in which the metal selectively activates the alkyne: an endocyclic process and two exo-cyclizations, one proceeding by anti attack of the alkene and a second one resulting in a syn addition. Although cyclobutenes may be formed in transition-metal-catalyzed cyclization of some enynes, particularly, 1,7-enynes, these compounds are not necessarily the intermediates in the skeletal rearrangement. Cyclobutenes are formed by ring expansion of syn-cyclopropyl metal-carbenes formed in the syn pathway.  相似文献   

16.
Song L  Liu K  Li C 《Organic letters》2011,13(13):3434-3437
With the promotion of Lewis acid BF(3)?OEt(2), various N-(hex-5-enyl)-2-iodoalkanamides underwent efficient and regioselective 9-endo iodine-atom-transfer radical cyclization reactions at room temperature. The cyclized products were readily converted to the corresponding azonan-2-ones by reduction with Bu(3)SnH or to hexahydroindolizin-3(5H)-ones by treatment with aqueous Na(2)CO(3) in a one-pot, two-stage manner.  相似文献   

17.
Two series of enol ether radical cations were studied by laser flash photolysis methods. The radical cations were produced by heterolyses of the phosphate groups from the corresponding alpha-methoxy-beta-diethylphosphatoxy or beta-diphenylphosphatoxy radicals that were produced by 355 nm photolysis of N-hydroxypryidine-2-thione (PTOC) ester radical precursors. Syntheses of the radical precursors are described. Cyclizations of enol ether radical cations 1 gave distonic radical cations containing the diphenylalkyl radical, whereas cyclizations of enol ether radical cations 2 gave distonic radical cation products containing a diphenylcyclopropylcarbinyl radical moiety that rapidly ring-opened to a diphenylalkyl radical product. For 5-exo cyclizations, the heterolysis reactions were rate limiting, whereas for 6-exo and 7-exo cyclizations, the heterolyses were fast and the cyclizations were rate limiting. Rate constants were measured in acetonitrile and in acetonitrile solutions containing 2,2,2-trifluoroethanol, and several Arrhenius functions were determined. The heterolysis reactions showed a strong solvent polarity effect, whereas the cyclization reactions that gave distonic radical cation products did not. Recombination reactions or deprotonations of the radical cation within the first-formed ion pair compete with diffusive escape of the ions, and the yields of distonic radical cation products were a function of solvent polarity and increased in more polar solvent mixtures. The 5-exo cyclizations were fast enough to compete efficiently with other reactions within the ion pair (k approximately 2 x 10(9) s(-1) at 20 degrees C). The 6-exo cyclization reactions of the enol ether radical cations are 100 times faster (radical cations 1) and 10 000 times faster (radical cations 2) than cyclizations of the corresponding radicals (k approximately 4 x 10(7) s(-1) at 20 degrees C). Second-order rate constants were determined for reactions of one enol ether radical cation with water and with methanol; the rate constants at ambient temperature are 1.1 x 10(6) and 1.4 x 10(6) M(-1) s(-1), respectively.  相似文献   

18.
[reaction: see text] We synthesized zigzag polymers consisting of dithia[3.3](2,6)pyridinophane units that were flipped rapidly as a result of syn-[anti]-syn isomerization. Pyridinophane units were fixed in the syn form by complexation with palladium, and the resulting polymer complex exhibited a high catalytic activity for the Heck coupling reaction.  相似文献   

19.
《Chemical physics letters》1985,115(2):212-215
Cis and trans, and syn and anti. isomers are studied by IR and NMR in acetonitrile-d3 solutions. Cis and syn isomers form completely intramolecular N+H…N⇌N…H+N bonds. They show, however, nearly no proton polarizability since the donor and acceptor are electronically conjugated. The trans and anti isomers form intermolecular N+H…N⇌N…H+N bonds showing large proton polarizability.  相似文献   

20.
(o-butenylhalobenzene)Cr(CO)(3) complexes were synthesized by diastereoselectve allylmetal additions to o-halo benzaldehyde complexes. The addition of allylZnBr proved particularly convenient and clean. The complexes undergo intramolecular Pd-catalyzed cyclizations (Heck reactions) without decomplexation and/or alkene isomerization. In complexes with a benzylic stereogenic center, the diastereoselectivity of the alkene carbopalladation is governed by the planar chirality of the complex rather than by the benzylic stereogenic center in the side chain. This reaction outcome can be rationalized by the geometry of the arene plane vs that of the Pd coordination plane in the transition step of the alkene carbopalladation step. An alternative cyclization procedure involves the generation of a Cr(CO)(3)-coordinated arene radical from the bromo and iodo complexes. Intramolecular aryl-radical cyclization affords indan complexes. The transition metal arene pi-bond remains intact during this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号