首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
肖翅  田娜  周志有  孙世刚 《电化学》2020,26(1):61-72
催化剂的性能与其表面结构及组成密切相关,高指数晶面纳米晶的表面含有高密度的台阶原子等活性位点而表现出较高的催化活性. 本文综述了电化学方波电位方法用于Pt、Pd、Rh等贵金属高指数晶面结构纳米晶催化剂的制备、形成机理及其电催化性能的研究. 针对贵金属利用率问题,还着重介绍了具有较高质量活性的小粒径Pt二十四面体的制备. 在此基础上,还介绍了电化学方波电位方法用于低共熔溶剂中制备高指数晶面纳米晶,以及高指数晶面纳米催化剂的表面修饰及应用;最后对高指数晶面纳米催化剂的发展做出了展望.  相似文献   

2.
Noble metal nanocrystals (NCs) enclosed with high‐index facets hold a high catalytic activity thanks to the high density of low‐coordinated step atoms that they exposed on their surface. Shape‐control synthesis of the metal NCs with high‐index facets presents a big challenge owing to the high surface energy of the NCs, and the shape control for metal Rh is even more difficult because of its extraordinarily high surface energy in comparison with Pt, Pd, and Au. The successful synthesis is presented of tetrahexahedral Rh NCs (THH Rh NCs) enclosed by {830} high‐index facets through the dynamic oxygen adsorption/desorption mediated by square‐wave potential. The results demonstrate that the THH Rh NCs exhibit greatly enhanced catalytic activity over commercial Rh black catalyst for the electrooxidation of ethanol and CO.  相似文献   

3.
The development of high-performance nanocatalysts relies essentially on the generation of stable and active surface sites at the atomic scale through synthetic control of the size, shape, and chemical composition of nanoscale metals and metal oxides. One promising route is to induce the exposure of catalytically active high-index facets of nanostructures through shape-controlled syntheses. We have designed and prepared two types of Pd nanoshells that are enclosed by high-index {730} and {221} facets through heteroepitaxial growth on high-index-faceted Au nanocrystals. The turnover numbers per surface atom of the high-index-faceted Pd nanoshells have been found to be 3-7 times those of Pd and Au-Pd core-shell nanocubes that possess only {100} facets in catalyzing the Suzuki coupling reaction. These results open up a potential for the development of inexpensive and highly active metal nanocatalysts.  相似文献   

4.
Tetrahexahedral Pt nanocrystals (THH Pt NCs) bounded by high-index facets possess a high density of active sites and display therefore a higher catalytic activity in comparison with those enclosed by low-index facets. In the current communication, we report, for the first time, the decoration of THH Pt NC surfaces by using Bi adatoms and have demonstrated that the catalytic activity of the Bi decorated THH Pt NCs toward HCOOH electrooxidation has been drastically enhanced in comparison with bare THH Pt NCs. It has also been revealed that the catalytic activity of Bi decorated THH Pt NCs for all coverages investigated always exhibits a higher catalytic activity that is about double that of Bi decorated Pt nanospheres. The study is of great importance regarding both fundamentals and applications.  相似文献   

5.
High-index surfaces of a face-centered cubic metal (e.g., Pd, Pt) have a high density of low-coordinated surface atoms and therefore possess enhanced catalysis activity in comparison with low-index faces. However, because of their high surface energy, the challenge of chemically preparing metal nanocrystals having high-index facets remains. We demonstrate in this work that introducing amines as the surface controller allows concave Pt nanocrystals having {411} high-index facets to be prepared through a facile wet-chemical route. The as-prepared Pt nanocrystals display a unique octapod morphology with {411} facets. The presence of high-index {411} exposed facets endows the concave Pt nanocrystals with excellent electrocatalytic activity in the oxidation of both formic acid and ethanol.  相似文献   

6.
本文基于课题组前期工作,选用适当的金属前驱物、还原剂、稳定剂和保护剂,通过调控氧化刻蚀和反应动力学等,成功合成了形貌和尺寸均不相同的Pd纳米晶.经过认真的纳米粒子清洗和电极修饰组装,考察了它们在电催化甲酸氧化反应中的形貌与性能的关系.研究结果表明,Pd纳米晶样品的最大电流密度以纳米八面体(nanooctahedra)、纳米线(nanowires)、纳米立方体(nanocubes)、纳米瓜子(nanotapers)、凹面纳米立方体(concave nanocubes)的顺序递增,催化甲酸氧化反应的起始氧化电位均小于0.2V.研究结果印证了Pd纳米晶催化甲酸氧化反应的催化性能在尺寸效应上主要受活性表面积的影响,扣除表面积效应后的催化性能与其尺寸没有明确关系.该系列Pd纳米晶的催化性能主要取决于其表面结构,得出Pd纳米晶催化甲酸氧化反应遵循{111}晶面〈{100}晶面〈高指数晶面的性能活性顺序.综合最大电流密度和最小操作电位因素发现,Pd凹面纳米立方体和Pd纳米瓜子具有相对较好的商用价值.  相似文献   

7.
表面结构控制和表面异种金属修饰是调控催化剂反应性的重要方法。因此,我们结合高指数晶面结构的高反应性与表面修饰异种金属,合成具有{730}高指数晶面的钯二十四面体纳米晶,并通过循环伏安扫描电沉积法得到Ru修饰的钯二十四面体纳米晶。电化学测试结果表明,低的Ru覆盖度(θ_(Ru)=0.08)可显著提高对碱性介质中甲醇电氧化的催化性能。电化学原位红外光谱结果表明,少量Ru的修饰没有减少CO的生成,而是促进了低电位下甲醇氧化成甲酸根。  相似文献   

8.
Au nanocrystals (NCs) with an unprecedented hexoctahedral structure enclosed exclusively by high-index {321} facets have been prepared for the first time. Manipulating the NC growth kinetics by controlling the amount of reductant and the reaction temperature in the presence of a suitable surfactant was the key synthetic lever for controlling the morphology of the Au NCs. The hexoctahedral Au NCs exhibited efficient optical and surface-enhanced Raman scattering activities due to their unique morphological characteristics.  相似文献   

9.
Noble‐metal nanocrystals (NCs) show excellent catalytic performance for many important electrocatalysis reactions. The crystallographic properties of the facets by which the NCs are bound, closely associated with the shape of the NCs, have a profound influence on the electrocatalytic function of the NCs. To develop an efficient strategy for the synthesis of NCs with controlled facets as well as compositions, understanding of the growth mechanism of the NCs and their interaction with the chemical species involved in NC synthesis is quite important. Furthermore, understanding the facet‐dependent catalytic properties of noble‐metal NCs and the corresponding mechanisms for various electrocatalysis reactions will allow for the rational design of robust electrocatalysts. In this review, we summarize recently developed synthesis strategies for the preparation of mono‐ and bimetallic noble‐metal NCs by classifying them by the type of facets through which they are enclosed and discuss the electrocatalytic applications of noble‐metal NCs with controlled facets, especially for reactions associated with fuel‐cell applications, such as the oxygen reduction reaction and fuel (methanol, ethanol, and formic acid) oxidation reactions.  相似文献   

10.
贵金属Pd纳米晶体的催化性能与其表面结构有着密切联系。基于目前Pd多面体纳米晶体可控合成技术的发展,Pd纳米晶体催化性能的进一步优化及其在催化领域的应用前景依然广阔。本文主要阐述了关于Pd多面体纳米晶的制备及其作为电催化剂在燃料电池中应用的最新研究进展。在介绍纳米晶体的生长机理及其表面结构与晶体形状的关系之后,重点描述了Pd多面体纳米晶体常见的几种制备方法,概述了Pd多面体纳米晶体作为催化剂在燃料电池阴极和阳极中的应用。最后总结展望了Pd多面体纳米晶体作为催化剂的研究方向及其发展前景。  相似文献   

11.
Nanostructures with concave surfaces are not common, and their synthesis is still challenging. In this paper, we have successfully synthesized two kinds of five-fold-twinned Au decahedra and dodecagonal plates by changing the reaction conditions. 40 high-index {221} facets were observed in the concave decahedron. The truncated decahedral gold nanocrystals (NCs) with a large size of 250-350 nm were obtained for the first time, which breaks the assumption that the truncated five-fold-twinned Au nanoparticles (NPs) can only be obtained with a size below 5 nm. The growth mechanism and the evolution process of the gold nanostructures were discussed. This work provides a facile way to synthesize concave decahedra, truncated decahedra and dodecagonal plates with controlled nanostructures.  相似文献   

12.
Controlled syntheses of multicomponent metal nanocrystals (NCs) and high-index surfaces have attracted increasing attention due to the specific physical and chemical properties of such NCs. Taking advantage of copper underpotential deposition as a bridge, hexoctahedral Au-Pd alloy NCs with {hkl} facets exposed were successfully synthesized, while phase separation occurred in the absence of Cu(2+) ions. The as-prepared hexoctahedral Au-Pd alloy NCs exhibited very excellent performance in terms of both formic acid electro-oxidation and methanol tolerance due to synergism between the high-index facets and the alloy.  相似文献   

13.
贵金属纳米晶在电催化等领域具有广泛应用. 其催化活性往往与纳米晶体的表面结构直接相关,而催化剂的贵金属原子利用率与比表面积密切相关. 因小尺寸纳米晶难以保留特定的晶面,而具有特定表面的纳米晶通常结晶成尺寸较大、比表面积比较小的晶体,调控纳米晶的尺寸和表面结构两种策略似乎相互矛盾. 如何可控合成同时具有特定表面结构和大比表面积的贵金属纳米晶具有重要的意义. 本综述从形貌调控角度详细介绍提高贵金属纳米晶原子利用率的方法策略;总结调控单贵金属及其合金同时具有特定晶面和大比表面积的研究现状;最后,对纳米晶的形貌调控领域未来的发展趋势提出展望.  相似文献   

14.
Metallic nanocrystals (NCs) with well‐defined sizes and shapes represent a new family of model systems for establishing structure–function relationships in heterogeneous catalysis. Here in this study, we show that catalyst poisoning can be utilized as an efficient strategy for nanocrystals shape and composition control, as well as a way to tune the catalytic activity of catalysts. Lead species, a well‐known poison for noble‐metal catalysts, was investigated in the growth of Pd NCs. We discovered that Pb atoms can be incorporated into the lattice of Pd NCs and form Pd–Pb alloy NCs with tunable composition and crystal facets. As model catalysts, the alloy NCs with different compositions showed different selectivity in the semihydrogenation of phenylacetylene. Pd–Pb alloy NCs with better selectivity than that of the commercial Lindlar catalyst were discovered. This study exemplified that the poisoning effect in catalysis can be explored as efficient shape‐directing reagents in NC growth, and more importantly, as a strategy to tailor the performance of catalysts with high selectivity.  相似文献   

15.
The shape sensitivity of Pd catalysts in Suzuki–Miyaura coupling reactions is studied using nanocrystals enclosed by well‐defined surface facets. The catalytic performance of Pd nanocrystals with cubic, cuboctahedral and octahedral morphologies are compared. Superior catalytic reactivity is observed for Pd NCs with {100} surface facets compared to {111} facets. The origin of the enhanced reactivity associated with a cubic morphology is related to the leaching susceptibility of the nanocrystals. Molecular oxygen plays a key role in facilitating the leaching of Pd atoms from the surface of the nanocrystals. The interaction of O2 with Pd is itself facet‐dependent, which in turn gives rise to more efficient leaching from {100} facets, compared to {111} facets under the reaction conditions.  相似文献   

16.
Using bottom-up chemistry techniques, the composition, size, and shape in particular can now be controlled uniformly for each and every nanocrystal (NC). Research into shape-controlled NCs have shown that the catalytic properties of a material are sensitive not only to the size but also to the shape of the NCs as a consequence of well-defined facets. These findings are of great importance for modern heterogeneous catalysis research. First, a rational synthesis of catalysts might be achieved, since desired activity and selectivity would be acquired by simply tuning the shape, that is, the exposed crystal facets, of a NC catalyst. Second, shape-controlled NCs are relatively simple systems, in contrast to traditional complex solids, suggesting that they may serve as novel model catalysts to bridge the gap between model surfaces and real catalysts.  相似文献   

17.
Polyoxometalates (POMs), as inorganic ligands, can endow metal nanocrystals (NCs) with unique reactivities on account of their characteristic redox properties. In the present work, we present a facile POM‐mediated one‐pot aqueous synthesis method for the production of single‐crystalline Pd NCs with controlled shapes and sizes. The POMs could function as both reducing and stabilizing agents in the formation of NCs, and thus gave a fine control over the nucleation and growth kinetics of NCs. The prepared POM‐stabilized Pd NCs exhibited excellent catalytic activity and stability for electrocatalytic (formic acid oxidation) and catalytic (Suzuki coupling) reactions compared to Pd NCs prepared without the POMs. This shows that the POMs play a pivotal role in determining the catalytic performance, as well as the growth, of NCs. We envision that the present approach can offer a convenient way to develop efficient NC‐based catalyst systems.  相似文献   

18.
The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.  相似文献   

19.
Reducible oxide-supported noble metal nanoparticles exhibit high activity in catalyzing many important oxidation reactions. However, atom migration under harsh reaction conditions leads to deactivation of the catalyst. Meanwhile, single-atom catalysts demonstrate enhanced stability, but often suffer from poor catalytic activity owing to the ionized surface states. In this work, we simultaneously address the poor activity and stability issues by synthesizing highly active and durable rhodium (Rh) single-atom catalysts through a “wrap-bake-peel” process. The pre-coated SiO2 layer during synthesis of catalyst plays a crucial role in not only protecting CeO2 support against sintering, but also donating electron to weaken the Ce−O bond, producing highly loaded Rh single atoms on the CeO2 support exposed with high-index {210} facets. Benefiting from the unique electronic structure of CeO2 {210} facets, more oxygen vacancies are generated along with the deposition of more electropositive Rh single atoms, leading to remarkably improved catalytic performance in CO oxidation.  相似文献   

20.
This paper describes a layer-by-layer epitaxial approach to the synthesis of multishelled nanocrystals composed of alternating shells of Pd and Pt by starting with seeds made of Pd or Pt nanocrystals. The synthesis was conducted by sequentially adding PtCl(4)(2-) and PdCl(4)(2-) salt precursors into a system containing either Pd or Pt seeds (in the shape of cuboctahedrons, octahedrons, plates, or cubes) together with a weak reducing agent such as citric acid (CA). The slow reduction kinetics associated with CA played an important role in the epitaxial growth of one metal on the other, resulting in the formation of Pd-Pt multishelled nanocrystals. Owing to the capping effect of CA for {111} facets of Pd and Pt, the multishelled nanocrystals tended to be enclosed by {111} facets in the form of octahedrons or thin plates, depending on the shapes of the Pd or Pt seeds: octahedrons for cuboctahedral, cubic, or octahedral seeds, and plates for platelike seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号