首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of propene (CH(3)CH═CH(2)) with hydrogen atoms has been investigated in a heated single-pulsed shock tube at temperatures between 902 and 1200 K and pressures of 1.5-3.4 bar. Stable products from H atom addition and H abstraction have been identified and quantified by gas chromatography/flame ionization/mass spectrometry. The reaction for the H addition channel involving methyl displacement from propene has been determined relative to methyl displacement from 1,3,5-trimethylbenzene (135TMB), leading to a reaction rate, k(H + propene) → H(2)C═CH(2) + CH(3)) = 4.8 × 10(13) exp(-2081/T) cm(3)/(mol s). The rate constant for the abstraction of the allylic hydrogen atom is determined to be k(H + propene → CH(2)CH═CH(2) + H(2)) = 6.4 × 10(13) exp(-4168/T) cm(3)/(mol s). The reaction of H + propene has also been directly studied relative to the reaction of H + propyne, and the relationship is found to be log[k(H + propyne → acetylene + CH(3))/k(H + propene → ethylene + CH(3))] = (-0.461 ± 0.041)(1000/T) + (0.44 ± 0.04). The results showed that the rate constant for the methyl displacement reaction with propene is a factor of 1.05 ± 0.1 larger than that for propyne near 1000 K. The present results are compared with relevant earlier data on related compounds.  相似文献   

2.
The branching ratios for the reactions of attachment of hydroxyl radical to propene and hydrogen-atom abstraction were measured at 298 K over the buffer gas pressure range 60-400 Torr (N(2)) using a subatmospheric pressure turbulent flow reactor coupled with a chemical ionization quadrupole mass spectrometer. Isotopically enriched water H(2)(18)O was used to produce (18)O-labeled hydroxyl radicals in reaction with fluorine atoms. The β-hydroxypropyl radicals formed in the attachment reactions 1a and 1b , OH + C(3)H(6) → CH(2)(OH)C(?)HCH(3) (eq 1a ) and OH + C(3)H(6) → C(?)H(2)CH(OH)CH(3) (eq 1b ), were converted to formaldehyde and acetaldehyde in a sequence of secondary reactions in O(2)- and NO-containing environment. The (18)O-labeling propagates to the final products, allowing determination of the branching ratio for the attachment channels of reaction 1. The measured branching ratio for attachment is β(1b) = k(1b)/(k(1a) + k(1b)) = 0.51 ± 0.03, independent of pressure over the 60-400 Torr pressure range. An upper limit on the hydrogen-abstraction channel, OH + C(3)H(6) → H(2)O + C(3)H(5) (eq 1c ), was determined by measuring the water yield in reactions of OH and OD radicals (produced via H(D) + NO(2) → OH(OD) + NO reactions) with C(3)H(6) as k(1c)/(k(1a) + k(1b) + k(1c)) < 0.05 (at 298 K, 200 Torr N(2)).  相似文献   

3.
Reaction rates of hydroxyl (OH) radicals with ethylene (C?H?) and propene (C?H?) were studied behind reflected shock waves. OH + ethylene → products (rxn 1) rate measurements were conducted in the temperature range 973-1438 K, for pressures from 2 to 10 atm, and for initial concentrations of ethylene of 500, 751, and 1000 ppm. OH + propene → products (rxn 2) rate measurements spanned temperatures of 890-1366 K, pressures near 2.3 atm, and initial propene concentrations near 300 ppm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH?)?-CO-OH, and monitored by laser absorption near 306.7 nm. Rate constants for the reactions of OH with ethylene and propene were extracted by matching modeled and measured OH concentration time-histories in the reflected shock region. Current data are in excellent agreement with previous studies and extend the temperature range of OH + propene data. Transition state theory calculations using recent ab initio results give excellent agreement with our measurements and other data outside our temperature range. Fits (in units of cm3/mol/s) to the abstraction channels of OH + ethylene and OH + propene are k? = 2.23 × 10? (T)(2.745) exp(-1115 K/T) for 600-2000 K and k? = 1.94 × 10? (T)(2.229) exp(-540 K/T) for 700-1500 K, respectively. A rate constant determination for the reaction TBHP → products (rxn 3) was also obtained in the range 745-1014 K using OH data from behind both incident and reflected shock waves. These high-temperature measurements were fit with previous low-temperature data, and the following rate expression (0.6-2.6 atm), applicable over the temperature range 400-1050 K, was obtained: k? (1/s) = 8.13 × 10?12 (T)(7.83) exp(-14598 K/T).  相似文献   

4.
To explore the dynamics of OH formation from two photon absorbed NO(2) with H(2)O, a high-level multiconfigurational perturbation theory was used to map the potential energy profiles of NO(2) dissociation to O ((1)D) + NO (X(2)Π), and subsequent hydrogen abstraction producing 2OH (X(2)Π) + NO (X(2)Π) in the highly excited S(PP) (?(2)A', (2)ππ*) state. The ground state NO(2) is promoted to populate in the S(NP1) (?(2)A", (2)nπ*) intermediate state by one photon absorption at ~440 nm, one thousandth of which is further excited to S(PP) (?(2)A', (2)ππ*) state and undergoes a medium-sized barrier (~11.0 kcal/mol) to give rise to OH radicals. In comparison with the hydrogen abstraction reaction in highly vibrationally excited NO(2) ground state, two photon absorption facilitates NO(2) dissociation to O ((1)D) and O ((1)D) + H(2)O → 2OH (X(2)Π) but results in low quantum yield of NO(2)** since there is a weak absorption upon the second beam light at ~440 nm. It can be concluded that the reaction of two photon absorbed NO(2) with H(2)O makes negligible contributions to the formation of OH radicals. In contrast, single photon absorption at <554 nm is a possible process on the basis of the present and previous computations.  相似文献   

5.
The kinetics and H atom channel yield at both 298 and 195 K have been determined for reactions of CN radicals with C2H2 (1.00+/-0.21, 0.97+/-0.20), C2H4 (0.96+/-0.032, 1.04+/-0.042), C3H6 (pressure dependent), iso-C4H8 (pressure dependent), and trans-2-C4H8 (0.039+/-0.019, 0.029+/-0.047) where the first figure in each bracket is the H atom yield at 298 K and the second is that at 195 K. The kinetics of all reactions were studied by monitoring both CN decay and H atom growth by laser-induced fluorescence at 357.7 and 121.6 nm, respectively. The results are in good agreement with previous studies where available. The rate coefficients for the reaction of CN with trans-2-butene and iso-butene have been measured at 298 and 195 K for the first time, and the rate coefficients are as follows: k298K=(2.93+/-0.23)x10(-10) cm3 molecule(-1) s(-1), k195K=(3.58+/-0.43)x10(-10) cm3 molecule(-1) s(-1) and k298K=(3.17+/-0.10)x10(-10) cm3 molecule(-1) s(-1), k195K=(4.32+/-0.35)x10(-10) cm3 molecule(-1) s(-1), respectively, where the errors represent a combination of statistical uncertainty (2sigma) and an estimate of possible systematic errors. A potential energy surface for the CN+C3H6 reaction has been constructed using G3X//UB3LYP electronic structure calculations identifying a number of reaction channels leading to either H, CH3, or HCN elimination following the formation of initial addition complexes. Results from the potential energy surface calculations have been used to run master equation calculations with the ratio of primary:secondary addition, the average amount of downward energy transferred in a collision DeltaEd, and the difference in barrier heights between H atom elimination and an H atom 1, 2 migration as variable parameters. Excellent agreement is obtained with the experimental 298 K H atom yields with the following parameter values: secondary addition complex formation equal to 80%, DeltaEd=145 cm(-1), and the barrier height for H atom elimination set 5 kJ mol(-1) lower than the barrier for migration. Finally, very low temperature master equation simulations using the best fit parameters have been carried out in an increased precision environment utilizing quad-double and double-double arithmetic to predict H and CH3 yields for the CN+C3H6 reaction at temperatures and pressures relevant to Titan. The H and CH3 yields predicted by the master equation have been parametrized in a simple equation for use in modeling.  相似文献   

6.
Reactions of hydroxyl (OH) radicals with 1-butene (k(1)), trans-2-butene (k(2)), and cis-2-butene (k(3)) were studied behind reflected shock waves over the temperature range 880-1341 K and at pressures near 2.2 atm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH(3))(3)-CO-OH, and monitored by narrow-line width ring dye laser absorption of the well-characterized R(1)(5) line of the OH A-X (0, 0) band near 306.7 nm. OH time histories were modeled using a comprehensive C(5) oxidation mechanism, and rate constants for the reaction of OH with butene isomers were extracted by matching modeled and measured OH concentration time histories. We present the first high-temperature measurement of OH + cis-2-butene and extend the temperature range of the only previous high-temperature study for both 1-butene and trans-2-butene. With the potential energy surface calculated using CCSD(T)/6-311++G(d,p)//QCISD/6-31G(d), the rate constants and branching fractions for the H-abstraction channels of the reaction of OH with 1-butene were calculated in the temperature range 300-1500 K. Corrections for variational and tunneling effects as well as hindered-rotation treatments were included. The calculations are in good agreement with current and previous experimental data and with a recent theoretical study.  相似文献   

7.
The potential energy surface for the Cl + propene reaction was analyzed at the MP2 level using Pople's 6-31G(d,p) and 6-311+G(d,p), and Dunning's cc-pVDZ and aug-cc-pVDZ basis sets. Two different channels for the addition reaction leading to chloroalkyl radicals and five alternative channels for the abstraction reaction leading to C(3)H(5) (.) + HCl were explored. The corresponding energy profiles were computed at the QCISD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ level of theory. Theoretical results suggest that the previously established mechanism consisting of (1) direct abstraction and (2) addition-elimination steps is instead made up of (1) addition through an intermediate and (2) two-step abstraction processes. No direct abstraction mechanism exists on the potential energy surface. The kinetic equations derived for the new mechanism are consistent with the pressure dependence experimentally observed for this reaction.  相似文献   

8.
The gas-phase CN + propene reaction is investigated using synchrotron photoionization mass spectrometry (SPIMS) over the 9.8-11.5 eV photon energy range. Experiments are conducted at room temperature in 4 Torr of He buffer gas. The CN + propene addition reaction produces two distinct product mass channels, C(3)H(3)N and C(4)H(5)N, corresponding to CH(3) and H elimination, respectively. The CH(3) and H elimination channels are measured to have branching fractions of 0.59 ± 0.15 and 0.41 ± 0.10, respectively. The absolute photoionization cross sections between 9.8 and 11.5 eV are measured for the three considered H-elimination coproducts: 1-, 2-, and 3-cyanopropene. Based on fits using the experimentally measured photoionization spectra for the C(4)H(5)N mass channel and contrary to the previous study (Int. J. Mass. Spectrom.2009, 280, 113-118), where it was concluded that 3-cyanopropene was not a significant product, the new data suggests 3-cyanopropene is produced in significant quantity along with 1-cyanopropene, with isomer branching fractions from this mass channel of 0.50 ± 0.12 and 0.50 ± 0.24, respectively. However, similarities between the 1-, 2-, and 3-cyanopropene photoionization spectra make an unequivocal assignment difficult based solely on photoionization spectra. The CN + CH(2)CHCD(3) reaction is studied and shows, in addition to the H-elimination product signal, a D-elimination product channel (m/z 69, consistent with CH(2)CHCD(2)CN), providing further evidence for the formation of the 3-cyanopropene reaction product.  相似文献   

9.
The gas‐phase reactions of OH radicals with 1,4‐cyclohexadiene, 1,3,5‐cycloheptatriene, and 2,3‐dimethylpentanal have been investigated to determine the importance of H‐atom abstraction at specific positions in these molecules. Benzene was observed as a product of the reaction of OH radicals with 1,4‐cyclohexadiene in 12.5 ± 1.2% yield, in good agreement with a previous study and indicating that this is the fraction of the reaction proceeding by H‐atom abstraction from the allylic C? H bonds. In contrast, no formation of tropone from 1,3,5‐cycloheptatriene was observed, suggesting that in this case H‐atom abstraction is not important. For the reaction of OH radicals with 2,3‐dimethylpentanal, formation of 3‐methyl‐2‐pentanone was observed in 5.4 ± 1.0% yield (after correction for reaction of 3‐methyl‐2‐pentanone with OH radicals), and this product is predicted to be formed after initial H‐atom abstraction from the 2‐position CH group. Acetaldehyde and 2‐butanone were also observed as products, with initial yields of ~90% and ~26%, respectively, and their formation appeared to involve, at least in part, an intermediary acyl peroxy radical. Using a relative rate method, the measured rate constants for the reactions of OH radicals with 2,3‐dimethylpentanal, 3‐methyl‐2‐pentanone, and tropone are (in units of 10?12 cm3 molecule?1 s?1) 2,3‐dimethylpentanal, 42 ± 7; 3‐methyl‐2‐pentanone, 6.87 ± 0.08; and tropone, 42 ± 6. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 415–426, 2003  相似文献   

10.
The reactions of Cl atoms with cis- and trans-2-butene have been studied using FTIR and GC analyses. The rate constant of the reaction was measured using the relative rate technique. Rate constants for the cis and trans isomers are indistinguishable over the pressure range 10-900 Torr of N2 or air and agree well with previous measurements at 760 Torr. Product yields for the reaction of cis-2-butene with Cl in N2 at 700 Torr are meso-2,3-dichlorobutane (47%), DL-2,3-dichlorobutane (18%), 3-chloro-1-butene (13%), cis-1-chloro-2-butene (13%), trans-1-chloro-2-butene (2%), and trans-2-butene (8%). The yields of these products depend on the total pressure. For trans-2-butene, the product yields are as follows: meso-2,3-dichlorobutane (48%), dl-2,3-dichlorobutane (17%), 3-chloro-1-butene (12%), cis-1-chloro-2-butene (2%), trans-1-chloro-2-butene (16%), and cis-2-butene (2%). The products are formed via addition, addition-elimination from a chemically activated adduct, and abstraction reactions. These reactions form (1) the stabilized 3-chloro-2-butyl radical, (2) the chemically activated 3-chloro-2-butyl radical, and (3) the methylallyl radical. These radicals subsequently react with Cl2 to form the products via a proposed chemical mechanism, which is discussed herein. This is the first detailed study of stereochemical effects on the products of a gas-phase Cl+olefin reaction. FTIR spectra (0.25 cm(-1) resolution) of meso- and DL-2,3-dichlorobutane are presented. The relative rate technique was used (at 900 Torr and 297 K) to measure: k(Cl + 3-chloro-1-butene) = (2.1 +/- 0.4) x 10(-10), k(Cl + 1-chloro-2-butene) = (2.2 +/- 0.4) x 10(-10), and k(Cl + 2,3-dichlorobutane) = (1.1 +/- 0.2) x 10(-11) cm3 molecule(-1) s(-1).  相似文献   

11.
The O((1)D) + C(3)H(8) reaction has been reinvestigated using the universal crossed molecular beam method. Three reaction channels, CH(3) + C(2)H(4)OH, C(2)H(5) + CH(2)OH, and OH + C(3)H(7), have been observed. All three channels are significant in the title reaction with the C(2)H(5) formation process to be the most important, while the CH(3) formation and the OH formation channels are about equal. Product kinetic energy distributions and angular distributions have been determined for the three reaction channels observed. The oxygen-containing radicals in the CH(3) and C(2)H(5) formation pathways show forward-backward symmetric angular distribution relative to the O atom beam, while the OH product shows a clearly forward angular distribution. These results indicate that the OH formation channel seems to exhibit different dynamics from the CH(3) and C(2)H(5) channels.  相似文献   

12.
The major bimolecular product of alkyl + O(2) reactions is alkene + hydroperoxyl radical (HO(2)), but in the reverse direction, the reactants are reformed to a very limited extent only. The most important products of the alkene + HO(2) reactions are alkylperoxy radical (ROO(?)), hydroxyl radical (OH) + cyclic ether, and the corresponding hydroperoxyalkyl ((?)QOOH) species. Moreover, abstraction of allylic hydrogens can compete with the addition, further complicating the possible outcome of this reaction type and its effect on low-temperature combustion chemistry. In this paper, six alkene + HO(2) reactions and the reaction between an unsaturated oxygenate and HO(2) are studied based on previously established potential energy surfaces. The studied unsaturated compounds are ethene, propene, 1-butene, trans-2-butene, isobutene, cyclohexene, and vinyl alcohol. Using multiwell master equations, temperature- (300-1200 K) and pressure-dependent rate coefficients and branching fractions are calculated for these reactions. The importance of this reaction type for the combustion of unsaturated compounds is also assessed, and we show that, to get reliable results, it is important to include the pressure-dependence of the rate coefficients in the calculations.  相似文献   

13.
The reaction of HO2NO2 (peroxynitric acid, PNA) with OH was studied by the hybrid density functional B3LYP and CBS-QB3 methods. Based on the calculated potential energy surface, five reaction channels, H2O+NO2+O2, HOOH+NO3, NO2+HO3H, HO2+HONO2 and HO2+HOONO, were examined in detail. The major reaction channel is PNA+OH→M1→TS1→H2O+NO2+O2. Taking a pre-equilibrium approximation and using the CBS-QB3 energies, the theoretical rate constant of this channel was calculated as 1.13×10-12 cm3/(molecule s) at 300 K, in agreement with the experimental result. Comparison between reactions of HOONO2+OH and HONO2+OH was carried out. For HOR+OH reactions, the total rate constants increase from R=NO2 to R=ONO2, which is consistent with experimental measurements.  相似文献   

14.
A laser ablation-molecular beam/reflectron time-of-flight mass spectrometric technique was used to investigate the ion-molecule reactions that proceed within Ti+(ROH)n (R = C2H5, CF3CH2) heterocluster ions. The mass spectra exhibit a major sequence of cluster ions with the formula Ti+(OR)m(ROH)n (m = 1, 2), which is attributed to sequential insertions of Ti+ into the O-H bond of C2H5OH or CF3CH2OH molecules within the heteroclusters, followed by H eliminations. The TiO+ and TiOH+ ions produced from the reactions of Ti+ with C2H5OH are interpreted as arising from insertion of Ti+ into the C-O bond, followed by C2H5 and C2H6 eliminations, respectively. When Ti+ reacted with CF3CH2OH, by contrast, considerable contributions from TiFOH+, TiF2+, and TiF2OH+ ions were observed in the mass spectrum of the reaction products, indicating that F and OH abstractions are the dominant product channels. Ab initio calculations of the complex of Ti+ with 2,2,2-trifluoroethanol show that the minimum energy structure is that in which Ti+ is attached to the O atom and one of the three F atoms of 2,2,2-trifluoroethanol, forming a five-membered ring. Isotope-labeling experiments additionally show that the chemical reactivity of heterocluster ions is greatly influenced by the presence of fluorine substituents and cluster size. The reaction energetics and formation mechanisms of the observed heterocluster ions are discussed.  相似文献   

15.
The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen [O((3)P)] with iso-propyl radicals, (CH(3))(2)CH, were investigated by applying a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. The nascent distributions of OH (X(2)Π: υ' = 0) from the major reaction channel O((3)P) + (CH(3))(2)CH → C(3)H(6) (propene) + OH showed substantial internal excitations with a bimodal feature of low- and high-N' components with neither spin-orbit nor Λ-doublet propensities. Unlike previous kinetic results, proposed to proceed only through the direct H-atom abstraction process, on the basis of the population analysis and comparison with the statistical theory, the title reaction can be described in terms of two competing mechanisms at the molecular level: direct abstraction process and indirect short-lived addition-complex-forming process with a ratio of 1.25?:?1.  相似文献   

16.
C2H3+NO2反应速率常数的研究   总被引:6,自引:0,他引:6  
利用激光光解C2H3Br产生C2H3自由基,在气相298 K, 总压2.66×103 Pa的条件下,研究C2H3与NO2的反应,用激光光解-激光诱导荧光(LP-LIF)检测中间产物OH自由基的相对浓度随着反应时间的变化关系,报导了双分子反应C2H3+NO2的速率常数k(C2H3+NO2)=(1.8±0.05)×10-11cm3•molec.-1•s-1,同时也得到OH+NO2反应的速率常数k(OH+NO2)=(2.1±0.15)×10-12 cm3•molec.-1•s-1.  相似文献   

17.
Formation of C4 and smaller carboxylic acids from gas-phase ozonolysis of several alkenes under dry (relative humidity (RH) < 1%) and humid (RH = 65%) conditions have been investigated. We have developed a technique based on solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to quantify the acids, as well as other products, and applied it to the reactions of ozone with propene, trans-2-butene, 2,3-dimethyl-2-butene, and isoprene. Acetic acid yields from propene and trans-2-butene ozonolysis in the presence of an OH scavenger were 2.7 +/- 0.6 and 2.9 +/- 0.6%, respectively, under dry conditions and 1.8 +/- 0.4 and 2.3 +/- 0.5% at 65% RH. Isoprene ozonolysis produced methacrylic and propenoic acids with yields of 5.5 +/- 1 and 3.0 +/- 1%, under dry conditions and 4.1 +/- 1 and 1.5 +/- 0.3% under wet conditions, respectively. That water inhibits acid formation indicates that the water reaction with stabilized Criegee intermediates is at most a minor source of acids. Acids that may form as coproducts of the OH radical elimination pathway, acetic acid from 2,3-dimethylbutene and isoprene, and propenoic acid from isoprene were also observed with significant yields (up to 10%), although the production of acetic acid was not a linear function of the alkene reacted. Carbonyl products are also reported.  相似文献   

18.
The overall rate constants of the NO reaction with chloroalkylperoxy radicals derived from the Cl-initiated oxidation of several atmospherically abundant alkenes-ethene, propene, 1-butene, 2-butene, 2-methylpropene, 1,3-butadiene, and isoprene (2-methyl-1,3-butadiene)-were determined for the first time via the turbulent flow technique and pseudo-first-order kinetics conditions with high-pressure chemical ionization mass spectrometry for the direct detection of chloroalkylperoxy radical reactants. The individual 100 Torr, 298 K rate constants for each monoalkene system were found to be identical within the 95% confidence interval associated with each separate measurement, whereas the corresponding rate constants for 1,3-butadiene and isoprene were both approximately 20% higher than the monoalkene mean value. Our previous study of the reaction of hydroxylalkylperoxy radicals (derived from the OH-initiated oxidation of alkenes) with NO yielded identical rate constants for all of the alkenes under study, with a rate constant value within the statistical uncertainty of the value determined here for the NO reaction of chloroalkylperoxy radicals derived from monoalkenes. Thus, the reaction of NO with chloroalkylperoxy radicals derived from dialkenes is found to be significantly faster than the NO reaction with either chloroalkylperoxy radicals derived from monoalkenes or hydroxyalkylperoxy radicals derived from either mono- or dialkenes.  相似文献   

19.
FTIR-smog chamber techniques were used to study the products and mechanisms of the Cl atom and OH radical initiated oxidation of trans-3,3,3-trifluoro-1-chloro-propene, t-CF(3)CH=CHCl, in 700 Torr of air or N(2)/O(2) diluent at 296 ± 2 K. The reactions of Cl atoms and OH radicals with t-CF(3)CH=CHCl occur via addition to the >C=C< double bond; chlorine atoms add 15 ± 5% at the terminal carbon and 85 ± 5% at the central carbon, OH radicals add approximately 40% at the terminal carbon and 60% at the central carbon. The major products in the Cl atom initiated oxidation of t-CF(3)CH=CHCl were CF(3)CHClCHO and CF(3)C(O)CHCl(2), minor products were CF(3)CHO, HCOCl and CF(3)COCl. The yields of CF(3)C(O)CHCl(2), CF(3)CHClCOCl and CF(3)COCl increased at the expense of CF(3)CHO, HCOCl and CF(3)CHClCHO as the O(2) partial pressure was increased over the range 10-700 Torr. Chemical activation plays a significant role in the fate of CF(3)CH(O)CHCl(2) and CF(3)CClHCHClO radicals. In addition to reaction with O(2) to yield CF(3)COCl and HO(2) the major competing fate of CF(3)CHClO is Cl elimination to give CF(3)CHO (not C-C bond scission as previously thought). As part of this study k(Cl + CF(3)C(O)CHCl(2)) = (2.3 ± 0.3) × 10(-14) and k(Cl + CF(3)CHClCHO) = (7.5 ± 2.0) × 10(-12) cm(3) molecule(-1) s(-1) were determined using relative rate techniques. Reaction with OH radicals is the major atmospheric sink for t-CF(3)CH=CHCl. Chlorine atom elimination giving the enol CF(3)CH=CHOH appears to be the sole atmospheric fate of the CF(3)CHCHClOH radicals. The yield of CF(3)COOH in the atmospheric oxidation of t-CF(3)CH=CHCl will be negligible (<2%). The results are discussed with respect to the atmospheric chemistry and environmental impact of t-CF(3)CH=CHCl.  相似文献   

20.
The products of the gas-phase reaction of the OH radical with 3-methyl-1-butene in the presence of NO have been investigated at room temperature and 740 torr total pressure of air by gas chromatography with flame ionization detection, in situ Fourier transform infrared absorption spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry. The products identified and quantified by GC-FID and in situ FT-IR absorption spectroscopy were HCHO, 2-methylpropanal, acetone, glycolaldehyde, and methacrolein, with formation yields of 0.70±0.06, 0.58±0.08, 0.17±0.02, 0.18±0.03, and 0.033±0.007, respectively. In addition, IR absorption bands due to organic nitrates were observed, consistent with API-MS observations of product ion peaks attributed to the β-hydroxynitrates (CH3)2CHCH(ONO2)CH2OH and/or (CH3)2CHCH(OH)CH2ONO2 formed from the reactions of the corresponding β-hydroxyalkyl peroxy radicals with NO. A formation yield of ca. 0.15 for these nitrates was estimated using IR absorption band intensities for known organic nitrates. These products account for essentially all of the reacted 3-methyl-1-butene. Analysis of the potential reaction pathways involved shows that H-atom abstraction from the allylic C(SINGLEBOND)H bond in 3-methyl-1-butene is a minor pathway which accounts for 5–10% of the overall OH radical reaction. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 577–587, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号