首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The synthesis, characterization, and growth of Ge-silicalite-1 from optically clear solutions are reported. Ge-silicalite-1 is readily formed from optically clear solutions of TEOS, TPAOH, water, and a germanium source at 368 K. X-ray fluorescence (XRF) is used to determine the Si/Ge ratio and indicates that germanium inclusion is typically 30-50% of that in the actual mixture. Adsorption, power X-ray diffraction (PXRD), and 29Si NMR indicate the materials are crystalline and microporous. In situ small-angle X-ray scattering (SAXS) is applied to investigate the influences of germanium source (GeO2 and Ge(OC2H5)4) and content (Si/Ge 100:5) on the growth of Ge-silicalite-1 from clear solutions at 368 K. The in situ SAXS investigations show that for solutions with Si/Ge ratios of 100, 50, and 25 using Ge(OC2H5)4 the induction periods are approximately 6 h and the particle growth rates are 1.82 +/- 0.04, 2.52 +/- 0.13, and 2.85 +/- 0.08 nm/h, respectively, at 368 K, compared to those of pure silicalite-1 (6 h induction period, 1.93 +/- 0.1 nm/h growth rate). Further increasing the Si/Ge ratio to 15 and 5 shortens the induction period to approximately 4.5 h, and the growth rates are 3.07 +/- 0.16 and 2.05 +/- 0.10 nm/h, respectively, indicating the Si/Ge ratio that maximizes Ge-silicalite-1 growth is between 25 and 15. Similar trends are obtained with germanium oxide; however, the growth rates are all consistently larger than those for syntheses with Ge(OC2H5)4. The results indicate that Ge-silicalite-1 growth rates in the presence of germanium are increased as compared to those of pure-silica syntheses.  相似文献   

2.
The synthesis protocol for Ge-imogolite (aluminogermanate nanotubes) consists of 3 main steps: base hydrolysis of a solution of aluminum and germanium monomers, stabilization of the suspension and heating at 95 °C. The successful synthesis of these nanotubes was found to be sensitive to the hydrolysis step. The impact of the hydrolysis ratio (from n(OH)/n(Al) = 0.5 to 3) on the final product structure was examined using a combination of characterization tools. Thus, key hydrolysis ratios were identified: n(OH)/n(Al) = 1.5 for the formation of nanotubes with structural defects, n(OH)/n(Al) = 2 for the synthesis of a well crystallized Ge imogolite and n(OH)/n(Al) > 2.5 where nanotube formation is hindered. The capability of controlling the degree of the nanotube's crystallinity opens up interesting opportunities in regard to new potential applications.  相似文献   

3.
Germanosilicate zeolites often suffer from low hydrothermal stability due to the high content of Ge. Herein, we investigated the post‐synthesis introduction of Al accompanied by stabilization of selected germanosilicates by degermanation/alumination treatments. The influence of chemical composition and topology of parent germanosilicate zeolites ( ITH , IWW , and UTL ) on the post‐synthesis incorporation of Al was studied. Alumination of ITH (Si/Ge=2–13) and IWW (Si/Ge=3–7) zeolites resulted in the partial substitution of Ge for Al (up to 80 %), which was enhanced with a decrease of Ge content in the parent zeolite. In contrast, in extra‐large pore zeolite UTL (Si/Ge=4–6) the hydrolysis of the interlayer Ge?O bonds dominated over substitution. The stabilization of zeolite UTL was achieved using a novel two‐step degermanation/alumination procedure by the partial post‐synthesis substitution of Ge for Si followed by alumination. This new method of stabilization and incorporation of strong acid sites may extend the utilization of germanosilicate zeolites, which has been until now been limited.  相似文献   

4.
Various boron only ([B]-BEA) as well as aluminum- and boron-containing beta zeolites ([Al,B]-BEA) have been prepared and modified by ion exchange of ammonium, sodium, and nickel ions. The zeolite samples have been characterized by 11B, 27Al, and 29Si MAS as well as three of them by 11B and 27Al 3Q-MAS NMR spectroscopy. The quantitative contributions of defect-free Si(nX) (n = 2, 1, 0; X = Al, B) and Si(OH)x (x = 2, 1) sites to the NMR signal intensities were calculated from the various Si/(Al + B) ratios and relative 11B, 27Al, and 29Si NMR signal intensities using the special distribution of aluminum and boron in different periodical building units of the zeolite framework. The boron atoms are sitting exclusively in diagonal positions in the four-membered rings of [B]-BEA zeolites, while the aluminum atoms are situated both in diagonal and lone positions in the four-membered rings of [Al,B]-BEA zeolites. A higher part of boron atoms are positioned in framework-related deformed tetrahedral boron species than in lattice positions in the [B]-BEA than in the [Al,B]-BEA zeolites. All extraframework octahedral aluminum species are transformed back to lattice positions due to ion exchange from the protonated form to ammonium-, sodium-, or nickel-ions containing zeolites. Oppositely, trigonal boron leaves the zeolite structure completely during ion exchange.  相似文献   

5.
研究四乙基氢氧化铵(TEA-OH)模板剂用量对合成的β沸石的结构及脱胺行为的影响。合成β沸石的模板剂的较佳用量(TEA+/Al)为2.10~1.68,合成的β沸石的相对结晶度均大于84%;β沸石中的铝含量(Al/Al+Si)及骨架铝含量(TdAl/TdAl+OhAl)随晶化混合液的TEA+/Al而变,存在最佳TEA+/Al点为1.9,此时合成的β沸石非骨架铝量最少,结构硅铝比最高;含TEA的β沸石脱胺过程为Hofmann降解反应,TGA测定的失重量、DSC测定的吸热量与β沸石中TEA含量密切相关.  相似文献   

6.
The investigation of the critical synthesis parameters of germanosilicate of UTL topology, possessing 14- and 12-rings, has been carried out in detail. (6R,10S)-6,10-Dimethyl-5-azoniaspiro[4.5]decane hydroxide was used as the structure-directing agent (SDA). The kinetics of the synthesis, the role of the Si/Ge ratio in the synthesis mixture, and the effect of the calcination procedure were investigated in relation to the crystallinity and textural properties of the synthesized material. The optimum synthesis time was found to be six days for Si/Ge and (Si+Ge)/SDA molar ratios of 2 and 1.7, respectively. The UTL zeolite crystallizes as small sheets of 10 mum in size. The micropore volume of the best crystals is 0.22 cm(3) g(-1) with a micropore diameter of 1.05 nm, based on DFT and Saito-Foley analyses of adsorption data.  相似文献   

7.
采用两步法将不同尺寸的silicalite-1分子筛纳米晶种通过自组装合成了一系列有序介孔silicalite-1分子筛。首先将强碱性的silicalite-1前驱体分别加热不同时间得到纳米晶种,然后在类似合成SBA-15的强酸性条件下组装成有序的介孔材料。合成条件的剧烈变化阻止了分子筛晶种的继续长大,并在三嵌段共聚物模板的诱导下组装成有序介孔材料。这种“自下而上”的方法制备有序介孔分子筛同时包含微孔和介孔。氮气吸脱附结果表明所制备的介孔分子筛材料均表现了很大的比表面积(730 m2/g以上)。  相似文献   

8.
Single crystals of BaAl2Si2 were grown from an Al molten flux and characterized using single-crystal X-ray diffraction at 10 and 90 K and neutron diffraction at room temperature. BaAl2Si2 crystallizes with the alpha-BaCu2S2 structure type (Pnma), is isostructural with alpha-BaAl2Ge2, and is an open 3D framework compound, where Al and Si form a covalent cagelike network with Ba2+ cations residing in the cages. BaAl2Si2 has a unit cell of a=10.070(3) A, b=4.234(1) A, and c=10.866(3) A, as determined by room-temperature single-crystal neutron diffraction (R1=0.0533, wR2=0.1034). The structure as determined by single-crystal neutron and X-ray diffraction (10 and 90 K) indicates that BaAl2Si2 (Pnma) is strictly isostructural to other (alpha)-BaCu2S2-type structures, requiring site specificity for Al and Si. Unlike BaAl2Ge2, no evidence for an alpha to beta (BaZn2P2-type, I4/mmm) phase transition was observed. This compound shows metallic electronic resistivity and Pauli paramagnetic behavior.  相似文献   

9.
Optically clear aluminosilicate gels of different chemical compositions (0–0.9 mole ratios of total Al/(Si + Al)) were prepared directly from solutions of inorganic aluminum salts, tetraethoxysilane, water and alcohol without the time-consuming sol forming. However, in these gels only 0–75% of total Al content was incorporated by chemical bonding into the gel network depending on the compositions of gels and the preparation conditions. The incorporation of aluminum atoms into the gel framework and the structure of wet gels were investigated by chemical analysis, 27Al magic angle spinning nuclear magnetic resonance, and small angle X-ray scattering. The present method may be most favourable for the preparation of aluminosilicate gels with 0.30–0.70 mole ratios of total Al/(Si + Al). At lower Al content acidic catalysis is required. Above 0.70 mole ratio homogeneous gels cannot be obtained by this method. The highest aluminum incorporation in homogeneous gel structures of various mole ratios of total Al/(Si + Al) was 0.53 mole ratio of bonded Al/(Si + Al) in contradiction to 0.1 mole ratio of Al/(Si + Al) achieved by traditional melting process of glass.  相似文献   

10.
通过优化和组合不同脱铝补硅方法,依次经氟硅酸铵处理、600oC水热处理、硅溶胶+草酸处理和800oC水热处理过程,成功实现了200nm超细NaY分子筛的深度脱铝,最终产品骨架硅铝比高达27.3,比表面积为581.9m2/g,分子筛结晶度保持在65%以上.结果表明,对于超细NaY分子筛脱铝,第一步采用氟硅酸铵进行部分缺陷修补尤为重要.根据分子筛晶粒尺寸不同,需严格控制氟硅酸铵用量和处理次数.当晶粒为200nm时,氟硅酸铵与分子筛骨架铝的摩尔比为0.16,处理一次较为适宜.在连续脱铝过程中及时补修脱铝产生的缺陷是保障超细NaY分子筛成功脱铝的关键,而采用氟硅酸铵、硅溶胶、800oC高温水热处理,可有效实施这种骨架修正作用.  相似文献   

11.
Two types of unsupported zeolites (silicalite-1 and silicalite-2) and porous alumina discs supports were prepared by the hydrothermal sol–gel synthesis method. The influence of the raw materials used as SiO2 source, the temperature of the thermal treatment and the presence of the ceramic support on the crystallization of zeolites were studied. The reaction products were characterized by X-ray diffraction (XRD), IR spectroscopy (IR) and scanning electron microscopy (SEM) studies. The SiO2 source had a significant effect on the final zeolite obtained: the use of colloidal silica sol (ZCS) as SiO2 source in the synthesis led to ZSM-11 (silicalite-2) crystals, while the sodium silicate solution (ZSS) produced the ZSM-5 (silicalite-1) type. The presence of the alumina support influences the crystallization process of ZSM-5, as it improves nucleation and the ordering of the crystals.  相似文献   

12.
室温离子液体中合成方钠石的研究   总被引:8,自引:0,他引:8  
本文以离子液体为溶剂, 在常压下采用离子液体热合成方法合成了方钠石分子筛.  相似文献   

13.
Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag+, Zn2+, and Cu2+ ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag+ ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag+, Zn2+, and Cu2+ ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.  相似文献   

14.
A highly ordered large pore mesoporous silica molecular sieve SBA-3, SBA-15, Al-SBA-15, and SBA-1, were developed and characterized by XRD, BET, FTIR, SEM, and NMR-MAS. The catalytic materials were synthesized using different raw materials and operation conditions. These materials contain a regular arrangement of uniform channels with diameters between 1.8 and 10 nm, high specific surface area and high specific pore volume. The designed methods were effective for the synthesis, presenting each mesostructured materials, patterns of XRD and other characteristics corresponding to the reported ones in literature. The new route employed to synthesize Al-SBA-15, generates a catalyst with only aluminum in tetrahedral form, according to the data of (27)Al NMR-MAS. However, several reports indicated that the coordination of the Al atoms changes below the Si/Al ratio of 45, presenting peaks corresponding to penta and hexa-coordinated aluminum, which are absent in our samples (Si/Al = 50 and 33).  相似文献   

15.
通过焙烧将分散在多孔氧化硅母体中的硝酸镁转化成高分散的MgO物种, 然后使用四丙基氢氧化铵(TPAOH)作为结构导向剂, 将含MgO 的母体通过水热晶化合成MgO/silicalite-1 分子筛复合物. X 射线衍射(XRD)、能量X射线光谱(EDX)和透射电镜(TEM)的结果表明MgO物种被均匀地分散在silicalite-1 分子筛晶体中. 将酸处理脱除氧化镁前后的样品在100%水蒸汽800℃ 条件下老化, 结果表明MgO 的引入有效地提高了分子筛的水热稳定性. 此外, 酸洗脱除MgO/silicalite-1分子筛中的MgO提高了分子筛结晶度, 同时引入了一定的介孔. N2物理吸附-脱附数据证明了酸洗后分子筛中介孔的存在. 水热稳定性的提高和介孔的引入对于在高温下保持催化剂的孔道结构, 提高催化剂的抗积碳能力, 降低催化剂的失活速率以及延长催化剂的使用寿命起着非常重要的作用.  相似文献   

16.
IntroductionIn 1961 Kerr et al. LI] first synthesized a new zeolite designated ZK-4 whose crystal structure is similar to that of zeolite A, but whose chemical composition differs significantly fromthat of zeolite A. Like zeolite A, ZK-4 contains 24 tetrahedra in a cubic unit cell. However,zeolite ZK--4 has a ratio of silicon to aluminium greater than 1. 0. This increases the siliconcontent of the new zeolite, resulting in smaller unit cell parameters than those of zeolite A.Because the …  相似文献   

17.
Confined space synthesis. A novel route to nanosized zeolites   总被引:1,自引:0,他引:1  
Confined space synthesis is a novel method in zeolite synthesis. It involves crystallization of the zeolite inside the pore system of an inert mesoporous matrix. In this way it is possible to prepare nanosized zeolites with a controlled size distribution by proper choice of the inert matrix. Here, confined space synthesis was adopted to prepare nanosized ZSM-5, zeolite Beta, zeolite X, and zeolite A with tailored crystal size distributions using mesoporous carbon blacks as inert matrices. All zeolites were characterized by X-ray powder diffraction, transmission electron microscopy, and nitrogen adsorption/desorption prior to and after removal of the carbon matrix. ZSM-5 with Si/Al ratios of 50, 100, and infinity (silicalite-1) were synthesized with controlled average crystal sizes in the range 20-75 nm. Nanosized zeolite Beta (7-30 nm), zeolite X (22-60 nm), and zeolite A (25-37 nm) were prepared similarly. Removal of the carbon matrix by controlled combustion allows a convenient method for isolation of the pure and highly crystalline zeolites. Therefore, confined space synthesis appears to be an attractive method for preparation of zeolites with a controlled size distribution.  相似文献   

18.
Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Bronsted acid sites in the formation of higher hydrocarbons. The oligomerization of olefins, dependent on the acidity of ZSM-5 zeolite, is an important step in the conversion of natural gas to liquid fuels. The framework Si/Al ratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst. ZSM-5 with the mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to the acidic ion-exchange method to produce ZSM-5 with various Si/Al ratios. The FT-IR analysis revealed that the integrated framework aluminum band, non-framework aluminum band, and silanol groups areas of the ZSM-5 zeolites decreased after being dealuminated. The performance of the dealuminated zeolite was tested for ethylene oligomerization. The results demonstrated that the dealumination of ZSM-5 led to higher ethylene conversion, but the gasoline selectivity was reduced compared to the performance  相似文献   

19.
Y沸石的酸性   总被引:1,自引:0,他引:1  
高滋  唐颐 《化学学报》1990,48(7):632-638
用^29Si MAS NMR(MAS为Magie Angle Spinning), 统计计算,NH3-TPD 等方法对(NH4)2·SiF6去铝补硅得到的高硅Y型沸石的酸位分布情况进行了研究, 并与典型酸催化反应数据相关联, 证实了Y型沸石的酸位强度取决于A1原子的周围环境, 即与次邻位A1原子数目n-NNN(NNN为Next Nearst Neighbor)有关, 沸石的强酸性来自次邻位无A1原子的AIO^-4四面体。 NH3-TPD法测量的沸石酸量和酸强度数据与^29Si MAS NMR 实验结果和统计计算得到的不同n-NNN A1位的分布是一致的。 随着A1含量减少, Y型沸石表面的总酸量是单调下降的。但强酸量却是先增加后下降, 在A1/(A1+Si)为0.15左右出现极大值。不同硅铝比的Y型沸石对典型的强酸性和弱酸性催化反应的活性变化规律亦与酸性相吻合。  相似文献   

20.
孔德金  邹薇  童伟益  房鼎业 《化学学报》2009,67(15):1765-1770
通过对核相ZSM-5的预处理步骤和在温和水热条件下的二次生长, 合成了壳层硅铝比高、核相硅铝比低、纳米晶壳层致密的MFI(核)/MFI(壳)型核壳分子筛材料. 考察了晶化温度和晶化时间对高硅壳层MFI/MFI核壳型沸石分子筛的合成的影响, 其适宜的合成条件为晶化温度高于130 ℃, 晶化时间19 h. 核相ZSM-5的预处理步骤对于成功合成此特殊核壳型分子筛材料十分关键. 与普通ZSM-5沸石分子筛相比, MFI/MFI核壳分子筛在催化甲苯甲基化反应时的失活效率显著降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号