首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of boundary layer flow, introduced in 1904 by Prandtl, is a popular field in Fluid Mechanics for engineers, physicists and mathematicians. The present work is a critique to many papers published in the last 15 years in the field of boundary layer flow. The critique concerns the shape of velocity, temperature and concentration profiles which are truncated due to small calculation domain used during the numerical solution procedure. These truncated profiles are not compatible with the boundary layer theory and introduce errors in wall shear stress and wall heat transfer values.  相似文献   

2.
In this article two types of flows are considered, the asymptotic suction velocity profile, which is a nearly parallel flow, and the Ekman boundary layer, which is a nonparallel flow. The modified Orr-Sommerfeld equation for the asymptotic suction velocity profile, which is the linearized stability equation for this flow, is analyzed and it is shown to have finitely many eigenvalues. In addition, the Ekman boundary layer is considered and the modulation equation for this nonparallel flow is derived for the first time.  相似文献   

3.
This paper concerns with studying the steady and unsteady MHD micropolar flow and mass transfers flow with constant heat source in a rotating frame of reference in the presence chemical reaction of the first-order, taking an oscillatory plate velocity and a constant suction velocity at the plate. The plate velocity is assumed to oscillate in time with a constant frequency; it is thus assumed that the solutions of the boundary layer are the same oscillatory type. The governing dimensionless equations are solved analytically after using small perturbation approximation. The effects of the various flow parameters and thermophysical properties on the velocity and temperature fields across the boundary layer are investigated. Numerical results of velocity profiles of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. The results show that there exists completely oscillating behavior in the velocity distribution.  相似文献   

4.
本文给出固壁边界上(即一个二维流形上) 的流体速度梯度和压力的二阶偏微分方程, 从而也给出边界上法向应力, 以及流体中运动物体所受的阻力和升力的计算公式. 本方法的创新在于边界上法向速度梯度不是通过在边界层内速度梯度的数值微分达到, 而是通过它与其他变量一起作为一组偏微分方程的解而得到, 证明边界层方程组的适定性问题, 并且给出解关于边界形状的Gâteaux 导数所满足的偏微分方程. 本文将本方法应用于飞机外形的形状最优控制, 给出阻力泛函关于形状第一变分的可计算形式. 数值例子表明, 用本方法得到的阻力精度比通用程序得到要高.  相似文献   

5.
We consider a laminar boundary‐layer flow of a viscous and incompressible fluid past a moving wedge in which the wedge is moving either in the direction of the mainstream flow or opposite to it. The mainstream flows outside the boundary layer are approximated by a power of the distance from the leading boundary layer. The variable pressure gradient is imposed on the boundary layer so that the system admits similarity solutions. The model is described using 3‐dimensional boundary‐layer equations that contains 2 physical parameters: pressure gradient (β) and shear‐to‐strain‐rate ratio parameter (α). Two methods are used: a linear asymptotic analysis in the neighborhood of the edge of the boundary layer and the Keller‐box numerical method for the full nonlinear system. The results show that the flow field is divided into near‐field region (mainly dominated by viscous forces) and far‐field region (mainstream flows); the velocity profiles form through an interaction between 2 regions. Also, all simulations show that the subsequent dynamics involving overshoot and undershoot of the solutions for varying parameter characterizing 3‐dimensional flows. The pressure gradient (favorable) has a tendency of decreasing the boundary‐layer thickness in which the velocity profiles are benign. The wall shear stresses increase unboundedly for increasing α when the wedge is moving in the x‐direction, while the case is different when it is moving in the y‐direction. Further, both analysis show that 3‐dimensional boundary‐layer solutions exist in the range −1<α<. These are some interesting results linked to an important class of boundary‐layer flows.  相似文献   

6.
The plane stagnation flow onto (Hiemenz boundary layer, HBL) and the asymptotic suction boundary layer flow over a flat wall (ASBL) are two boundary layer flows for which the incompressible Navier-Stokes equations are amenable to exact similarity solutions. The Hiemenz solution has been extended to swept Hiemenz flows by superposition of a third, spanwise-homogeneous sweep velocity. This solution becomes singular as the chordwise, tangential base flow component vanishes. In this limit, the homogeneous ASBL solution is valid, which however cannot describe the swept Hiemenz flow, because it does not contain any chordwise velocity. This work presents a generalized three-dimensional similarity solution which describes three-dimensional spanwise homogeneously impinging boundary layers at arbitrary wall-normal suction velocities, using a rescaled similarity coordinate. The HBL and the ASBL are shown to be two limits of this solution. Further extensions consist of oblique impingement or different boundary suction directions, such as slip or stretching walls. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The oscillatory flow of an incompressible dipolar fluid under isothermal conditions between parallel plates is studied. It is found that the velocity field is governed by two parameters characterising the fluid; and that for small frequencies the velocity is in phase with the exciting pressure gradient and the effect of dipolar inertia terms is negligible. For large frequencies, the flow has a boundary layer character and it is affected by both the parameters. Outside the layer there is a core about the axis in which the flow is affected only by the dipolar inertia terms.  相似文献   

8.
An analysis of the lower branch of the neutral curve for the Blasius boundary layer leads to a perturbed velocity field with a triple-deck structure, which is a rather unexpected result. It is the asymptotic treatment of the stability problem that has a rational basis, since it is in the limit of high Reynolds numbers that the basic flow has the form of a boundary layer. The principles for constructing a boundary layer stability theory based on the triple-deck theory are proposed. Although most attention is focused on transonic outer flows, a comparative analysis with the asymptotic theory of boundary layer stability in subsonic flows is given. The parameters of internal waves near the lower branch of the neutral curve are associated with a certain perturbation field pattern. These parameters satisfy dispersion relations derived by solving eigenvalue problems. The dispersion relations are investigated in complex planes.  相似文献   

9.
We present here a ‘similar’ solution for the nano boundary layer with nonlinear Navier boundary condition. Three types of flows are considered: (i) the flow past a wedge; (ii) the flow in a convergent channel; (iii) the flow driven by an exponentially-varying outer flows. The resulting differential equations are solved by the homotopy analysis method. Different from the perturbation methods, the present method is independent of small physical parameters so that it is applicable for not only weak but also strong nonlinear flow phenomena. Numerical results are compared with the available exact results to demonstrate the validity of the present solution. The effects of the slip length ?, the index parameters n and m on the velocity profile and the tangential stress are investigated and discussed.  相似文献   

10.
This paper deals with the solutions of steady as well as unsteady three-dimensional incompressible thermal boundary layer equations and the study of the response of heat transfer when there is a parabolic flow over a moving flat plate. The components of velocity in boundary layer are discussed by Sarma and Gupta and those results are used to analyse thermal boundary layer equations. A general analysis is made from which we deduce (i) Solutions of two-dimensional thermal boundary layer on a moving flat plate, (ii) Solutions of thermal boundary layer on a yawed flat plate, (iii) Solutions of thermal boundary layer when there is a parabolic flow over a moving flat plate by giving different values to β and Cx. Solutions are developed for large and small times and curves are drawn representing the variations of heat transfer from the plate with time for all the cases. The limiting time is also calculated.  相似文献   

11.
The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter (f0) and the ratio of free stream velocity to boundary velocity parameter (λ) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values off 0,m and λ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.  相似文献   

12.
An analysis is presented for the linear stability of a liquid film, adjacent to a compressible viscous gas stream. The analysis is valid for all wavelengths and liquid Reynolds numbers. The pressure and shear perturbations exerted by the gas on the liquid are calculated, using a gas model which takes into account the gas viscosity, velocity profile, and heat transfer. The results show that an inviscid, uniform stream model for the gas is inadequate unless the disturbed boundary layer is very thin. Although the present linear analysis is in fairly good agreement with the experimental observations for subsonic flow, it does not predict the observed wavelengths and wave speeds for supersonic flow.  相似文献   

13.
The steady boundary layer flow past a moving horizontal flat plate with a slip effect at the plate in a free stream with constant speed, slightly different from the plate speed is studied. An analytic perturbation solution of order two is obtained for the velocity. With respect to the parallel flow both the boundary layer and the inverted boundary layer characters of the flow are plotted and discussed. It is observed that under high slip, the flow becomes a nearly parallel flow with an increased speed.  相似文献   

14.
In this paper, an analytical solution in a closed form for the boundary layer flow over a shrinking sheet is presented when arbitrary velocity distributions are applied on the shrinking sheet. The solutions with seven typical velocity profiles are derived based on a general closed form expression. Such flow is usually not self-similar and the solution can only be implemented when the mass transfer at the wall is prescribed and determined by the moving velocity of the wall. The characteristics of the flows with the typical velocity distributions are discussed and compared with previous similarity solutions. The flow is observed to have quite different behavior from that of the self-similar flow reported in the literature and the results demonstrate distinctive momentum and energy transport characteristics. Some plots of the stream functions are also illustrated to show the difference in flow field between the shrinking sheet and the stretching sheet. An integral approach to solve boundary layer flow over a shrinking or stretching sheet with uncoupled arbitrary surface velocity and wall mass transfer velocity is outlined and the effectiveness of this approach is discussed.  相似文献   

15.
In the present paper, we study the boundary layer flow of viscous incompressible fluid over an inclined stretching sheet with body force and heat transfer. Considering the stream function, we convert the boundary layer equation into nonlinear third-order ordinary differential equation together with appropriate boundary conditions in an infinite domain. The nonlinear boundary value problem has been linearized by using the quasilinearization technique. Then, we develop a nonpolynomial spline method, which is used to solve the flow problem. The convergence analysis of the method is also discussed. We study the velocity function for different angles of inclination and Froude number with the help of various graphs and tables. Then using these in heat convection flow, we obtain the expression for temperature field. Skin friction is also calculated. The various results have been given in tables. At last, we calculated the Nusselt number.  相似文献   

16.
The nonlinear convection forced by the boundaries of a Hele Shaw cell to align perpendicular to an imposed shear flow was analytically investigated by the boundary-layer method. The imposed shear flow may be a Couette flow that extends throughout the convecting layer or flow confined to a boundary, depending on the geometry of the Hele Shaw cell. This study examined the case in which the imposed shear flow has a boundary-layer structure and its interaction with the convecting interior. Analytical solutions for both the boundary layer and interior were obtained. The study revealed the following.For large aspect ratio A , the interaction of the imposed shear flow and convection is confined to the boundary layer. The boundary layer is a viscous rather than a thermal layer. The results showed that the range of validity of the Hele Shaw equations used in the literature is of order 1/ A 2. For an asymptotically large aspect ratio A up to order 1/ A 2, the velocity in the y -direction must be zero. The velocity in the x -direction and the z -direction has a parabolic dependence on y , but the temperature perturbation does not depend on y . These results may have implication for convection in porous media.  相似文献   

17.
Solutions of steady as well as unsteady three-dimensional incompressible thermal boundary layer equations are studied when the temperature gradient at the moving flat plate in parabolic flow is prescribed. A general analysis is made and different cases are studied by giving values to β and Cx which determine the gradient and curvature of the outer flow steam lines. The components of velocity in boundary layer are discussed by Sarma and Gupta and those results are used to analyse the thermal boundary layer equations. The response of temperature of the plate are studied for large and small times and curves are drawn representing the variation of temperature with time for various cases. The limiting time is also calculated.  相似文献   

18.
The steady mixed convection boundary layer flow over a vertical surface immersed in an incompressible micropolar fluid is considered in this paper. Employing suitable similarity transformations, the governing partial differential equations are transformed into ordinary differential equations, and the transformed equations are solved numerically by the Keller-box method. Numerical results are obtained for the skin friction coefficient and the local Nusselt number as well as the velocity, angular velocity and temperature profiles. Both cases of assisting and opposing buoyant flows are considered. It is found that dual solutions exist for the assisting flow, besides that usually reported in the literature for the opposing flow. Moreover, in contrast to the classical boundary layer theory, the separation point of the boundary layer is found to be distinct from the point of vanishing skin friction.  相似文献   

19.
In the present investigation we have analyzed the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. The effects of thermal radiation are carried out for two cases of heat transfer analysis known as (1) Prescribed exponential order surface temperature (PEST) and (2) Prescribed exponential order heat flux (PEHF). The highly nonlinear coupled partial differential equations of Jeffrey fluid flow along with the energy equation are simplified by using similarity transformation techniques based on boundary layer assumptions. The reduced similarity equations are then solved analytically by the homotopy analysis method (HAM). The convergence of the HAM series solution is obtained by plotting (h/2p)\hbar-curves for velocity and temperature. The effects of physical parameters on the velocity and temperature profiles are examined by plotting graphs.  相似文献   

20.
In this paper, we study a stress diffusive perturbation of the system describing a viscoelastic flow. We analyse the boundary layer which arises near the boundary and we observe in particular that there is no boundary layer on the velocity at the first order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号