首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Although the characterization of proteins cannot solely rely upon sequence similarity, it has been widely proved that all-vs-all massive sequence comparisons may be an effective approach and a good basis for the prediction of biochemical functions or for the delineation of common shared properties. The program Cluster-C presented here enables a stand-alone and efficient construction of protein families within whole proteomes. The algorithm, which is based on the detection of cliques, ensures a high level of connectivity within the clusters. As opposed to the single transitive linkage method, Cluster-C allows a large number of sequences to be classified in such a way that the multidomain proteins do not produce a chain-grouping effect resulting in meaningless clusters. Moreover, some proteins can be present in several different but relevant clusters, which is of help in the determination of their functional domains. In the present analysis we used the Z-value, an evaluation of the significance of the similarity score, as the criterion for connecting sequences (the user can freely define the threshold of the similarity criterion). The clusters built with a rather low threshold (Z= 14) include more than 97% of the sequences and are consistent with known protein families and PROSITE patterns.  相似文献   

2.
In recent years, the poly-L-proline type II (PPII) conformation has gained more and more importance. This structure plays vital roles in many biological processes. But few studies have been made to predict PPII secondary structures computationally. The support vector machine (SVM) represents a new approach to supervised pattern classification and has been successfully applied to a wide range of pattern recognition problems. In this paper, we present a SVM prediction method of PPII conformation based on local sequence. The overall accuracy for both the independent testing set and estimate of jackknife testing reached approximately 70%. Matthew's correlation coefficient (MCC) could reach 0.4. By comparing the results of training and testing datasets with different sequence identities, we suggest that the performance of this method correlates with the sequence identity of dataset. The parameter of SVM kernel function was an important factor to the performance of this method. The propensities of residues located at different positions were also analyzed. By computing Z-scores, we found that P and G were the two most important residues to PPII structure conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号