首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main purpose of this study was to investigate the relationship between some coffee roasting variables (weight loss, density and moisture) with near infrared (NIR) spectra of original green (i.e. raw) and differently roasted coffee samples, in order to test the availability of non-destructive NIR technique to predict coffee roasting degree. Separate calibration and validation models, based on partial least square (PLS) regression, correlating NIR spectral data of 168 representatives and suitable green and roasted coffee samples with each roasting variable, were developed. Using PLS regression, a prediction of the three modelled roasting responses was performed. High accuracy results were obtained, whose root mean square errors of the residuals in prediction (RMSEP) ranged from 0.02 to 1.23%. Obtained data allowed to construct robust and reliable models for the prediction of roasting variables of unknown roasted coffee samples, considering that measured vs. predicted values showed high correlation coefficients (r from 0.92 to 0.98). Results provided by calibration models proposed were comparable in terms of accuracy to the conventional analyses, revealing a promising feasibility of NIR methodology for on-line or routine applications to predict and/or control coffee roasting degree via NIR spectra.  相似文献   

2.
Fourier-transform mid-infrared (FT-MIR) spectroscopy, combined with partial least-squares (PLS) regression and IPW as feature selection method, was used to develop reduced-spectrum calibration models based on a few IR bands to provide near-real-time predictions of two key parameters for the characterization of finished red wines, which are essential from a quality assurance standpoint: total and volatile acidity. Separate PLS calibration models, correlating IR data (only considering those regions showing a high signal to noise ratio) with each response studied, were developed. Wavenumber selection was also performed applying IPW-PLS to take into account only significant predictors, in an attempt to improve the quality of the final models constructed. Using both PLS and IPW-PLS regression, prediction of the two responses modelled was performed with very high reliability, with RMSECV and RMSEP values on the order of 1% (comparable in terms of accuracy to the results provided by the respective reference analysis methods). An important advantage derived from the application of the IPW-PLS method had to do with the low number of original variables needed for modelling both total acidity (22 significant wavenumbers) and volatile acidity (only 11 selected predictor variables), in such a way that variable selection contributed to enhance the stability and parsimony properties of the final calibration models. The high quality of the calibration models proposed encourages the feasibility of implementing them as a fast and reliable tool in routine analysis for the determination of critical parameters for wine quality.  相似文献   

3.
Rodrigues LO  Cardoso JP  Menezes JC 《Talanta》2008,75(5):1203-1207
The use of near infrared spectroscopy (NIRS) in downstream solvent based processing steps of an active pharmaceutical ingredient (API) is reported. A single quantitative method was developed for API content assessment in the organic phase of a liquid–liquid extraction process and in multiple process streams of subsequent concentration and depuration steps. A new methodology based in spectra combinations and variable selection by genetic algorithm was used with an effective improvement in calibration model prediction ability. Root mean standard error of prediction (RMSEP) of 0.05 in the range of 0.20–3.00% (w/w) was achieved. With this method, it is possible to balance the calibration data set with spectra of desired concentrations, whenever acquisition of new spectra is no longer possible or improvements in model's accuracy for a specific selected range are necessary. The inclusion of artificial spectra prior to genetic algorithms use improved RMSEP by 10%. This method gave a relative RMSEP improvement of 46% compared with a standard PLS of full spectral length.  相似文献   

4.
利用近红外光谱技术对食用植物油中反式脂肪酸(Trans fatty acids,TFA)含量进行快速定量检测,并通过波段选择、预处理方法、变量筛选及建模方法对TFA含量预测模型进行优化.采用AntarisⅡ傅里叶变换近红外光谱仪在4000~10000 cm-1光谱范围采集98个食用植物油样本的近红外透射光谱,然后采用气相色谱法测定TFA的真实含量.首先,对样本原始光谱进行波段、预处理方法优选;在此基础上,采用竞争自适应重加权法(Competitive adaptive reweighted sampling,CARS)筛选TFA相关的重要变量,最后应用主成分回归、偏最小二乘和最小二乘支持向量机方法分别建立食用植物油中TFA含量的预测模型.研究结果表明,近红外光谱技术检测食用植物油中的TFA含量是可行的,优化后的最佳预测模型的校正集和预测集R2分别为0.992和0.989,RMSEC和RMSEP分别为0.071%和0.075%.最佳预测模型所用的变量仅26个,占全波段变量的0.854%.此外,与全波段偏最小二乘预测模型相比,其预测集R2由0.904上升为0.989,RMSEP由0.230%下降为0.075%.由此表明,模型优化非常必要,CARS能有效筛选TFA相关的重要变量,极大减少建模变量数,从而简化预测模型,并较大提高预测模型的精度和稳定性.  相似文献   

5.
This paper evaluates analytical methods based on near infrared (NIR) and middle infrared (MIR) spectroscopy and multivariate calibration to monitor the stability of biodiesel. There was a focus on three parameters: oxidative stability index, acid number and water content. Ethylic and methylic biodiesel from different feedstocks were used in experiments of accelerated aging, in order to take into account the wide variety of oilseeds and feedstocks available in Brazil. Partial least squares (PLS) and multiple linear regression (MLR) models were developed. Different pre-processing techniques and spectral variable/regions selection algorithms were evaluated. For MLR models, the successive projection algorithm (SPA) was employed. Interval PLS (iPLS) and selection of variables taking into account the significant regression coefficients were used for PLS models. Results showed that both near and middle infrared regions, and all variable selection methods tested were efficient for predicting these three important quality parameters of B100, the root mean squares error of prediction (RMSEP) values being comparable to the reproducibility of the corresponding standard method for each property investigated.  相似文献   

6.
7.
Glycerol monolaurate (GML) products contain many impurities, such as lauric acid and glucerol. The GML content is an important quality indicator for GML production. A hybrid variable selection algorithm, which is a combination of wavelet transform (WT) technology and modified uninformative variable eliminate (MUVE) method, was proposed to extract useful information from Fourier transform infrared (FT-IR) transmission spectroscopy for the determination of GML content. FT-IR spectra data were compressed by WT first; the irrelevant variables in the compressed wavelet coefficients were eliminated by MUVE. In the MUVE process, simulated annealing (SA) algorithm was employed to search the optimal cutoff threshold. After the WT-MUVE process, variables for the calibration model were reduced from 7366 to 163. Finally, the retained variables were employed as inputs of partial least squares (PLS) model to build the calibration model. For the prediction set, the correlation coefficient (r) of 0.9910 and root mean square error of prediction (RMSEP) of 4.8617 were obtained. The prediction result was better than the PLS model with full-spectra data. It was indicated that proposed WT-MUVE method could not only make the prediction more accurate, but also make the calibration model more parsimonious. Furthermore, the reconstructed spectra represented the projection of the selected wavelet coefficients into the original domain, affording the chemical interpretation of the predicted results. It is concluded that the FT-IR transmission spectroscopy technique with the proposed method is promising for the fast detection of GML content.  相似文献   

8.
Non-linear regression methods in NIRS quantitative analysis   总被引:1,自引:0,他引:1  
Due to its speed and precision, near-infrared reflectance spectroscopy (NIRS) has become a widely used analytical technique in many industries. It offers, moreover, a number of other advantages which make it ideal for meeting current demands in terms of control and traceability: low cost per sample analysed; little or no need for sample preparation; ability to analyse a wide range of products and parameters; a high degree of reproducibility and repeatability. NIRS can be built into in-line processes, and - since no reagents are required - produces no waste. However, the major drawback to the use of NIRS for its most traditional application (the generation of prediction equations) is that it is a secondary method, and as such needs to be calibrated using a conventional reference method. For quantitative applications, calibration involves ascertaining the optimum mathematical relationship between spectral data and data provided by the reference method. The model may be fairly complex, since the NIRS spectrum is highly variable and contains physical/chemical information for the sample which may be redundant. As a result, multivariate calibration is required, based on a set of absorption values from several wavelengths. Since the relationship to be modelled is often non-linear, classical regression methods are unsuitable, and more complex strategies and algorithms must be sought in order to model this non-linearity. This overview addresses the most widely used non-linear algorithms in the management of NIRS data.  相似文献   

9.
The fact that bitumens behave as non-Newtonian fluids results in non-linear relationships between their near-infrared (NIR) spectra and the physico-chemical properties that define their consistency (viz. penetration and viscosity). Determining such properties using linear calibration techniques [e.g. partial least-squares regression (PLSR)] entails the previous transformation of the original variables by use of non-linear functions and employing the transformed variables to construct the models. Other properties of bitumens such as density and composition exhibit linear relationships with their NIR spectra. Artificial neural networks (ANNs) enable modelling of systems with a non-linear property-spectrum relationship; also, they allow one to determine several properties of a sample with a single model, so they are effective alternatives to linear calibration methods. In this work, the ability of ANNs simultaneously to determine both linear and non-linear parameters for bitumens without the need previously to transform the original variables was assessed. Based on the results, ANNs allow the simultaneous determination of several linear and non-linear physical properties typical of bitumens.  相似文献   

10.
Optimized sample-weighted partial least squares   总被引:2,自引:0,他引:2  
Lu Xu 《Talanta》2007,71(2):561-566
In ordinary multivariate calibration methods, when the calibration set is determined to build the model describing the relationship between the dependent variables and the predictor variables, each sample in the calibration set makes the same contribution to the model, where the difference of representativeness between the samples is ignored. In this paper, by introducing the concept of weighted sampling into partial least squares (PLS), a new multivariate regression method, optimized sample-weighted PLS (OSWPLS) is proposed. OSWPLS differs from PLS in that it builds a new calibration set, where each sample in the original calibration set is weighted differently to account for its representativeness to improve the prediction ability of the algorithm. A recently suggested global optimization algorithm, particle swarm optimization (PSO) algorithm is used to search for the best sample weights to optimize the calibration of the original training set and the prediction of an independent validation set. The proposed method is applied to two real data sets and compared with the results of PLS, the most significant improvement is obtained for the meat data, where the root mean squared error of prediction (RMSEP) is reduced from 3.03 to 2.35. For the fuel data, OSWPLS can also perform slightly better or no worse than PLS for the prediction of the four analytes. The stability and efficiency of OSWPLS is also studied, the results demonstrate that the proposed method can obtain desirable results within moderate PSO cycles.  相似文献   

11.
《中国化学会会志》2017,64(2):152-163
This paper presents a simple and sensitive method for the simultaneous determination of methyl paraben (MP ) and phenol (PO ) based on the application of successive projections algorithm (SPA ) to the first derivative spectra (200–350 nm). SPA is used for variables selection in order to obtain multiple linear regression (MLR ) models using a small subset of wavelengths. The starting vector and the number of variables are optimized and the best variables are selected according to the sequence of projection operations on the spectral data matrix of the calibration set. Principal component regression and partial least squares models are also developed for comparison. The best models are found to be SPA‐MLR using seven wavelengths from the first‐derivative spectra with a root‐mean‐square error of prediction (RMSEP) of 0.08 for MP and eight wavelengths with RMSEP of 0.31 for the determination of PO . The accuracy of the proposed method is confirmed by spiked recovery test on cosmetic samples with satisfactory results (86–110%). Analysis results of the cosmetic samples are also statistically compared with those obtained from the HPLC method, showing no significant difference regarding accuracy and precision. The results indicate the potential of SPA‐MLR and derivative spectrophotometry for rapid and sensitive analysis of cosmetic samples.  相似文献   

12.
Kernel partial least squares (KPLS) and support vector regression (SVR) have become popular techniques for regression of complex non-linear data sets. The modeling is performed by mapping the data in a higher dimensional feature space through the kernel transformation. The disadvantage of such a transformation is, however, that information about the contribution of the original variables in the regression is lost. In this paper we introduce a method which can retrieve and visualize the contribution of the variables to the regression model and the way the variables contribute to the regression of complex data sets. The method is based on the visualization of trajectories using so-called pseudo samples representing the original variables in the data. We test and illustrate the proposed method to several synthetic and real benchmark data sets. The results show that for linear and non-linear regression models the important variables were identified with corresponding linear or non-linear trajectories. The results were verified by comparing with ordinary PLS regression and by selecting those variables which were indicated as important and rebuilding a model with only those variables.  相似文献   

13.
A method for sulfur determination in diesel fuel employing near infrared spectroscopy, variable selection and multivariate calibration is described. The performances of principal component regression (PCR) and partial least square (PLS) chemometric methods were compared with those shown by multiple linear regression (MLR), performed after variable selection based on the genetic algorithm (GA) or the successive projection algorithm (SPA). Ninety seven diesel samples were divided into three sets (41 for calibration, 30 for internal validation and 26 for external validation), each of them covering the full range of sulfur concentrations (from 0.07 to 0.33% w/w). Transflectance measurements were performed from 850 to 1800 nm. Although principal component analysis identified the presence of three groups, PLS, PCR and MLR provided models whose predicting capabilities were independent of the diesel type. Calibration with PLS and PCR employing all the 454 wavelengths provided root mean square errors of prediction (RMSEP) of 0.036% and 0.043% for the validation set, respectively. The use of GA and SPA for variable selection provided calibration models based on 19 and 9 wavelengths, with a RMSEP of 0.031% (PLS-GA), 0.022% (MLR-SPA) and 0.034% (MLR-GA). As the ASTM 4294 method allows a reproducibility of 0.05%, it can be concluded that a method based on NIR spectroscopy and multivariate calibration can be employed for the determination of sulfur in diesel fuels. Furthermore, the selection of variables can provide more robust calibration models and SPA provided more parsimonious models than GA.  相似文献   

14.
Multivariate calibration problems often involve the identification of a meaningful subset of variables, from a vast number of variables for better prediction of output variables. A new graph theoretic method based on partial correlations (variable interaction network—VIN) is proposed. Many well studied representative calibration datasets spanning different application domains are selected for investigating the performance. Partial least squares (PLS) regression models combined with variable selection techniques are employed for benchmarking the performance. Subsets of variables with different number of variables are retained for the final analysis after VIN selection and progressive prediction accuracies are used for comparison. VIN-PLS results show significant improvement in prediction efficiencies and variable subset optimization. Improvement of up to 45% over existing methods with significantly fewer variables is achieved using the new method. Advantages of VIN based variable selection are highlighted.  相似文献   

15.
A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new “leave one out” method, so that the number of original variables resulted further reduced.  相似文献   

16.
17.
提出了一种基于在线膜富集的近红外漫反射光谱技术,对饮料中的微量塑化剂邻苯二甲酸二异辛酯(DEHP)进行快速检测。采用聚醚砜膜对饮料中的DEHP进行富集,将富集DEHP的膜直接进行近红外漫反射检测。参考DEHP的透射近红外光谱,对波数进行选择,以4 420~4 060、4 700~4 540、6 040~5 600cm-1作为建模的波数区间。通过比较原始光谱、多元散射校正、一阶求导、二阶求导及其组合,考察了光谱预处理方法对模型的影响,用去一交互验证法建立了偏最小二乘(PLS)模型,并用所建立的校正模型对校正集样品进行了预测。结果表明,在选定的波数区间,当用一阶求导对校正集光谱进行预处理时,所建立的模型对校正集的预测效果最佳,在隐变量数为7时,对校正集所有样品的校正均方根误差(RMSEC)为0.188 7mg/L。用此模型对预测集样品进行预测时,DEHP的质量浓度在0.5~5.0 mg/L范围内,预测均方根误差(RMSEP)为0.232 4 mg/L,平均相对预测误差为6.29%。  相似文献   

18.
19.
    
Summary The straight forward determination of concentrations by means of ion-sensitive electrodes is based on calibration procedures. In the case that the working range is within Nernstian response linear regression with ordinary least square calculation is sufficient. Caused by blanks there are deviations from linearity and calibration has to be done by a non-linear regression technique. Confidence intervals are discussed for both methods of calibration, for the calibration function as well as for the inverse function from the viewpoint of statistics. Furtheron, the expected relative error in the analytical result is taken into consideration as a very useful tool of comparing both methods. The influences of data distances and number of data are discussed. In many cases non-linear calibration has advantages compared to linear calibration eliminating the influence of a blank value. The possible working range is extended even below the socalled blank value.

Herrn Professor Fresenius zum 125jährigen Jubiläum der Fresenius-Zeitschrift für Analytische Chemie gewidmet  相似文献   

20.
Practical guidelines for reporting analytical calibration results are provided. General topics, such as the number of reported significant figures and the optimization of analytical procedures, affect all calibration scenarios. In the specific case of single-component or univariate calibration, relevant issues discussed in the present Tutorial include: (1) how linearity can be assessed, (2) how to correctly estimate the limits of detection and quantitation, (2) when and how standard addition should be employed, (3) how to apply recovery studies for evaluating accuracy and precision, and (4) how average prediction errors can be compared for different analytical methodologies. For multi-component calibration procedures based on multivariate data, pertinent subjects here included are the choice of algorithms, the estimation of analytical figures of merit (detection capabilities, sensitivity, selectivity), the use of non-linear models, the consideration of the model regression coefficients for variable selection, and the application of certain mathematical pre-processing procedures such as smoothing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号