首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inclusion complex of sulphaguanidine (SGN) in β-cyclodextrin has been investigated. To avoid the problem of the low solubility of β-cyclodextrin in water, solutions of β-cyclodextrin in urea have been used. A 1:1 stoichiometry and an association constant of 450 M−1 have been established for the complex. A new spectrofluorimetric method has been developed for the determination of SGN residues in honey samples. This sulphonamide is widely employed for honey treatment. The method for the determination is based on second-order multivariate calibration, applying parallel factor analysis (PARAFAC). No previous separation or samples pre-treatment were required. The calibration solutions were prepared in water, with concentrations in the range from 0.02 to 0.20 μg mL−1 for SGN. The use of the second-order calibration method in the standard addition mode, using the excitation-emission matrices (EEMs) as analytical signal, allowed its determination in honey samples, even in the presence of interferences, with satisfactory results. The proposed procedure was validated by comparing the obtained results with a HPLC method, with satisfactory results for the assayed method.  相似文献   

2.
This paper reports the properties and advantages of the three-way calibration models based on parallel factor analysis (PARAFAC) in the simultaneous determination of malachite green (MG) and its metabolite (leucomalachite green, LMG) in trout. A recently method proposed by community reference laboratory AFSSA-LERMVD (Fougères, France) has been used. The method is based on liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode. The validation of the method has been carried out taking into account the Decision 2002/657/EC. The figures of merit for PARAFAC and univariate calibration models of six non-consecutive days analyzed during a month were evaluated. With the samples of the first 3 days, calibration models were built and the fish fortification samples of the other days were predicted. Decision limits (CCalpha, alpha=0.01), detection capabilities (CCbeta, beta=0.05) and mean relative errors in absolute value (in calibration and with test samples) obtained with PARAFAC calibrations were more homogeneous than the ones obtained with the univariate calibrations, especially in LMG. These figures of merit were in the range of 0.2-0.83 microg kg(-1) (CCbeta) and 0.2-0.49 microg kg(-1) (CCalpha), whereas mean relative errors in absolute value were in the range of 1.1-7.4% in calibration and 3-12% in test samples for MG and LMG with PARAFAC calibrations. The PARAFAC calibrations allow detecting the test samples which are not similar to the calibration samples and in this way their wrong quantification is avoided.  相似文献   

3.
Two second-order calibration methods based on the parallel factor analysis (PARAFAC) and the alternating penalty trilinear decomposition (APTLD) method, have been utilized for the direct determination of terazosin hydrochloride (THD) in human plasma samples, coupled with the excitation-emission matrix fluorescence spectroscopy. Meanwhile, the two algorithms combing with the standard addition procedures have been applied for the determination of terazosin hydrochloride in tablets and the results were validated by the high-performance liquid chromatography with fluorescence detection. These second-order calibrations all adequately exploited the second-order advantages. For human plasma samples, the average recoveries by the PARAFAC and APTLD algorithms with the factor number of 2 (N = 2) were 100.4 ± 2.7% and 99.2 ± 2.4%, respectively. The accuracy of two algorithms was also evaluated through elliptical joint confidence region (EJCR) tests and t-test. It was found that both algorithms could give accurate results, and only the performance of APTLD was slightly better than that of PARAFAC. Figures of merit, such as sensitivity (SEN), selectivity (SEL) and limit of detection (LOD) were also calculated to compare the performances of the two strategies. For tablets, the average concentrations of THD in tablet were 63.5 and 63.2 ng mL−1 by using the PARAFAC and APTLD algorithms, respectively. The accuracy was evaluated by t-test and both algorithms could give accurate results, too.  相似文献   

4.
A "green" and quick analytical method for complex compounds was developed for simultaneous determination of tyrosine (Tyr) and dopamine (DA) in urine samples in this paper. The three-way responsive data recorded by excitation-emission matrix fluorescence (EEM) spectrometer was analyzed using second-order calibration methods based on both parallel factor analysis (PARAFAC) and selfweighted alternating trilinear decomposition (SWATLD) algorithms. The EEM spectra of the analytes were overlapped with the background in urine samples. However the second-order advantage of both PARAFAC and SWATLD methods was exploited, even in the presence of unknown interferences and the satisfactory results can be obtained. Furthermore, the linear ranges of Tyr and DA were determined to be 0.042-6.42 μg/mL and 0.18-4.43 μmg/mL, respectively, and the accuracies of both methods were validated by the analytical figures of merit (FOM).  相似文献   

5.
Multivariate methods comprise of a group of chemometric tools allowing the analysis of different analytical data, i.e., spectroscopic, chromatographic obtained from multichannel detector systems. Second-way data are widely used in analytical applications in combination with multivariate calibration methods, but three- and higher-way data are yet not as widely applied. In complex biological samples, the employment of the three-way data is of special interest, as they may be combined with methods that exploit the second-order advantage allowing calculating individual concentrations of the analytes of interest in the presence of unknown interferences in untreated samples. A very sensitive and selective method is proposed, by coupling photoinduced fluorescence and multivariate analysis of the three-way data excitation-emission fluorescence matrices (EEMs), of the photoproducts obtained from UV irradiation of three fluoroquinolones: enoxacin (ENO), norfloxacin (NOR) and ofloxacin (OFLO). The application of a previous photoirrradiation process allows the determination of mixtures of ENO, NOR and OFLO, in urine samples at biological levels without sample pretreatments. The resolution ability of N-way partial least squares (N-PLS), parallel factor analysis (PARAFAC) and self weighted alternating trilinear decomposition (SWATLD), is compared with partial least squares (PLS) and unfolded-PLS (U-PLS), in the analysis of ENO, NOR and OFLO in human urine samples.  相似文献   

6.
本文采用激发发射荧光光谱分别与化学计量学中平行因子分析(PARAFAC)和交替三线性分解(ATLD)二阶校正法相结合,对尿液样和血浆样中左旋多巴含量进行定量测定。实验不需对尿液和血浆预测样进行萃取等分离预处理。在尿液样中,当组分数取2时,用PARAFAC算法和ATLD算法获得的平均回收率分别为(98.9±2.3)%和(99.6±2.8)%。在血浆样中,当组分数取3时,PARAFAC算法和ATLD算法获得的平均回收率分别为(103.1±3.7)%和(99.2±4.2)%。研究结果表明,该法能够解决尿液样和血浆样中左旋多巴因尿液和血浆内源物质与待分析物光谱重叠所引起的难分辨的问题,可用于未知干扰共存下左旋多巴含量的直接快速定量测定。  相似文献   

7.
The models parallel factor analysis (PARAFAC) and the recently introduced bilinear least squares (BLLS) were applied to develop second-order calibration methods to high performance liquid chromatography with diode array detection (HPLC-DAD) data, where overlap of interferences with the compounds of interest was observed, making the determination and resolution of the analytes possible. In this work, the simultaneous determination of five pesticides and two metabolites in wine samples by HPLC-DAD was performed, using the second-order advantage. The results of two chromatographic methods were compared, involving either isocratic or gradient elution. An appropriate preprocessing method was necessary to correct the effects of time shifts, baseline variations and background. BLLS presented results that were of the same quality as PARAFAC in five cases, but in two other situations only PARAFAC enabled analyte quantitation. Relative errors of prediction lower than 10% for all compounds were obtained, indicating that the methodology employing HLPC-DAD and second-order calibration can handle complex analytical systems.  相似文献   

8.
In this paper, a methodology to evaluate the probability of false non-compliance and false compliance for screening methods, which give first or second-order multivariate signals is proposed. For this task 120 samples of 6 different kinds of milk have been measured by excitation-emission fluorescence. The samples have been spiked with different amounts of three sulfonamides (sulfadiazine, sulfamerazine and sulfamethazine). These substances have been classified in group B1 (veterinary medicines and contaminants) of annex I of Directive 96/23/EC. The European Union (Commission Regulation EC no. 281/96) has set the maximum residue level (MRL) of total sulfonamides at 100 μg kg−1 in muscle, liver, kidney and milk.The work shows that excitation-emission fluorescence together with the partial least squares class modeling (PLS-CM) procedure may be a suitable and cheap screening method for the total amount of sulfonamides in milk. Three models, PLS-CM, have been built, for the emission and excitation spectra (first-order signals) and for the excitation-emission matrices (second-order signals). In all the cases it reaches probabilities of false compliance below 5% as required by Decision 2002/657/EC.With the same flourescence signals, the total quantity of sulfonamide was calibrated using 2-PLS, 3-PLS and PARAFAC regressions. Using this quantitative approach, the capability of detection, CCβ, around the MRL has been estimated between 114.3 and 115.1 μg kg−1 for a probability of false non-compliance and false compliance equal to 5%.  相似文献   

9.
A novel method for determination of carbaryl in effluent was proposed in this study. The kinetic evolution of excitation-emission matrix fluorescence (EEM) for the pesticide were recorded and come into being a four-way data array. The four-way fluorescence data were analyzed using the parallel factor analysis (PARAFAC). The methodology exploits the second-order advantage of three-order calibration based on quadrilinear parallel factor analysis, allowing analyte concentrations to be estimated even in the presence of an uncalibrated fluorescent background. It gave the satisfactory results for determination of the carbaryl in effluent samples. In addition, the kinetic study of degradation of carbaryl was performed according to the kinetic profile provided by the calibration.  相似文献   

10.
《Analytica chimica acta》2004,515(1):55-63
Clenbuterol has been extracted by mixed solid-phase extraction from two biological matrices (bovine hair and urine) and detected by GC/MS (selected ion monitoring (SIM) and full-SCAN modes). The analytical signal has been modelled with univariate and three-way models, namely DTLD, PARAFAC, PARAFAC2, Tucker3 and trilinear PLS. Since clenbuterol is a banned substance a comparative study of the capability of detection (CCβ, X0=0) has been performed as a function of the sample (hair, 74 μg kg−1 and urine, 0.36 μg l−1), the mode in which the signals are monitored (SCAN, 283 μg kg−1 and SIM, 74 μg kg−1) and the statistical model (univariate, 283 μg kg−1 and trilinear PLS, 20.91 μg kg−1). The capability of detection has been calculated as stated in ISO 11843 and Decision 2002/657/EC setting in all cases the probabilities of false positive and of false negative at 0.05.The identification of the mass spectra must be done to confirm the presence of clenbuterol and has been carried out through PARAFAC. The correlation coefficient between the spectra estimated by PARAFAC and the library spectra is 0.96 (hair, SCAN mode) and 1.00 (hair and urine, SIM mode).The Decision 2002/657/EC advocates the use of independent mass fragments to identify banned compounds. These recommendations together with the effect of the number of ions registered on the capability of detection have lead us to select five uncorrelated fragments (86, 243, 262, 264 and 277) from the data set of 210 ions by hierarchical clustering of variables.  相似文献   

11.
Damiani PC 《Talanta》2011,85(3):1526-1534
A second-order multivariate calibration method based on a combination of unfolded partial least-squares (U-PLS) with residual bilinearization (RBL) has been applied to second-order data obtained from excitation-emission fluorescence matrices for determining atenolol in human urine, even in the presence of background interactions and fluorescence inner filter effects, which are both sample dependent. Atenolol is a cardioselective beta-blocker, which is considered a doping agent in shoot practice, so that its determination in urine can be required for monitoring the drug. Loss of trilinearity due to analyte-background interactions which may vary between samples, as well as inner filter effects, precludes the use of methods like parallel factor analysis (PARAFAC) that cannot handle trilinearity deviations, and justifies the employment of U-PLS. Successful analysis required to include the background in the calibration set. Unexpected components appear in new urine samples, different from those used in calibration set, requiring the second-order advantage which is obtained from a separate procedure known as residual bilinearization (RBL). Satisfactory results were obtained for artificially spiked urines, and also for real urine samples. They were statistically compared with those obtained applying a reference method based on high-performance liquid chromatography (HPLC).  相似文献   

12.
Giménez D  Sarabia LA  Ortiz MC 《The Analyst》2005,130(12):1639-1647
In this work an excitation emission molecular fluorescence technique with PARAFAC calibration is proposed for enrofloxacine determination in feeding water from poultry farms. In accordance with the working criteria of the 2002/657/EC European Decision, the proposed method has a capability of detection, CCbeta, of 6.8 microg l(-1), for both probabilities of false positive and false negative of 5%. The accuracy of the method is demonstrated and its precision is 1.7 microg l(-1), expressed as standard deviation. This method allows one to identify and determine the quantity of enrofloxacine present in water samples from poultry farms without it being necessary to determine the possible interferents, nor separate them in a step previous to calibration.  相似文献   

13.
The present article describes the simultaneous phosphorimetric determination of pyrene and benzo[a]pyrene, two highly toxic polycyclic aromatic hydrocarbons, through excitation-emission phosphorescence matrices (EEPMs) and second-order calibration. The developed approach enabled us to determine both compounds at μg L−1 concentration levels without the necessity of applying separation steps, as well as significantly reducing the experimental time. An artificial neural network (ANN) approach was applied to optimize the chemical variables which have an influence on the room-temperature phosphorescence emission of the studied analytes. The present study was employed for the discussion of the scopes of the applied second-order chemometric tools: parallel factor analysis (PARAFAC) and partial least-squares with residual bilinearization (PLS/RBL). The superior capability of PLS/RBL to model the profiles of other potentially interferent polycyclic aromatic hydrocarbons (PAHs) was demonstrated. The quality of the proposed method was established with the determination of both pyrene and benzo[a]pyrene in artificial and real water samples.  相似文献   

14.
A widely employed compound for honey treatment, sulfathiazole (ST), was determined in commercial honey samples, employing a combination of photochemically induced fluorescence excitation-emission matrices (EEMs) and chemometric processing of the recorded second-order data. Parallel Factor Analysis (PARAFAC) and Self-Weighted Alternating Trilinear Decomposition (SWATLD) methods were used for calibration. An appropriately designed calibration with a set of standards composed of 18 samples, coupled to the use of the second-order advantage offered by the applied chemometric techniques, allowed quantitation of sulfathiazole in spiked commercial honey samples. No previous separation or sample pretreatment steps were required. The results were compared with other calibration methods such as N-PLS and PLS-1 that produced good results on synthetic samples but not on the investigated commercial honey samples.  相似文献   

15.
A rapid non-separative spectroflourimetric method based on the second-order calibration of the excitation-emission data matrix was proposed for the determination of glutathione (GSH) in human plasma. In the phosphate buffer solution of pH 8.0 GSH reacts with ortho-phthaldehyde (OPA) to yield a fluorescent adduct with maximum fluorescence intensity at about 420 nm. To handle the interfering effects of the OPA adducts with aminothiols other than GSH in plasma as well as intrinsic fluorescence of human plasma, parallel factor (PARAFAC) analysis as an efficient three-way calibration method was employed. In addition, to model the indirect interfering effect of the plasma matrix, PARAFAC was coupled with standard addition method. The two-component PARAFAC modeling of the excitation-emission matrix fluorescence spectra accurately resolved the excitation and emission spectra of GSH, plasma (or plasma constituents). The concentration-related PARAFAC score of GSH represented a linear correlation with the concentration of added GSH, similar to that is obtained in simple standard addition method. Using this standard addition curve, the GSH level in plasma was found to be 6.10 ± 1.37 μmol L−1. The accuracy of the method was investigated by analysis of the plasma samples spiked with 1.0 μmol L−1 of GSH and a recovery of 97.5% was obtained.  相似文献   

16.
This paper reports a multiresponse optimization of an extraction procedure in the simultaneous determination of malachite green (MG) and its metabolite (leucomalachite green, LMG) in fish by liquid chromatography with triple quadrupole mass spectrometry (LC–MS/MS). Prior to optimization, the active factors of the extraction procedure were determined by a screening experimental design. Then, in the optimal experimental conditions of the extraction, MG and LMG have been determined by using a three-way calibration model based on parallel factor analysis (PARAFAC). The procedure fulfils the performance requirements for a confirmatory method established by the European Union Decision 2002/657/EC. This norm establishes maximum permitted tolerances for relative abundance of the precursor/product ion pairs. There is a reported contradiction in the literature related to the fact that there are standard samples whose concentration is greater than CCα but the maximum permitted tolerances are not fulfilled in the identification of the analytes. In this work, it is shown that with the information provided by PARAFAC this contradiction is avoided. The figures of merit for PARAFAC and univariate calibration procedures were evaluated under optimal conditions in the extraction step. The figures of merit obtained were in the range of 0.13–0.23 μg kg−1 for the decision limit, CCα, (α = 0.01) and 0.22–0.39 μg kg−1 for the detection capability, CCβ, (β = 0.05), whereas mean relative errors in absolute value were in the range of 2.8–4.6% for MG and LMG with PARAFAC calibration. The proposed optimized extraction procedure using a PARAFAC calibration was also applied in the determination of MG and LMG in gilthead bream samples: the decision limit was in the range of 0.45–0.55 μg kg−1, the detection capability was in the range of 0.76–0.92 μg kg−1 for MG and LMG. Trueness was likewise confirmed and the mean of the absolute values of relative errors were between 4.2% and 7.2%.  相似文献   

17.
《Analytica chimica acta》2004,501(2):193-203
According to the committee decision of 12 August 2002 (2002/657/EC) the capability of detection, CCβ, must be set in all analytical methods not only at concentration levels close to zero but also at the maximum permitted limit (PL). In this work we describe a methodology which evaluates the capability of detection of a fluorescence technique with soft calibration models (bilinear and trilinear PLS) to determine tetracyclines (group B1 substances from annex 1 of Directive 96/23/EC). Its estimation is based on the generalisation of the procedure described in International Union of Pure and Applied Chemistry and in the ISO standard 11843 for univariate signals which evaluates the probabilities of false positive (α) and false negative (β). The capability of detection, CCβ, estimated from the second-order signal and the trilinear PLS model is 9.93 μg l−1 of tetracycline, 17.75 μg l−1 of oxytetracycline and 26.31 μg l−1 of chlortetracycline, setting α and β at 0.05. The capability of detection, CCβ, determined around the PL (100 μg kg−1 in milk and muscle) with the second-order signal is 109.4 μg l−1 of tetracycline, 117.0 μg l−1 of oxytetracycline and 124.9 μg l−1 of chlortetracycline, setting α and β at 0.05. The results were compared with those obtained with zero and first-order signals. The effect of the interferences on the capability of detection was also analysed as well as the number of standards used to build the models and their calibration range.When a tetracycline is quantified in presence of uncalibrated ones by means of the trilinear PLS model the errors oscillate between 14.70% for TC and 9.57% for OTC.  相似文献   

18.
In the present study a second-order calibration strategy for high performance liquid chromatography with diode-array detection (HPLC-DAD) has been developed using parallel factor analysis (PARAFAC) and has been applied for simultaneous determination of aflatoxins B1, B2, G1 and G2 in pistachio nuts in the presence of matrix interferences. Sample preparation was based on solvent extraction (SE) followed by solid phase extraction (SPE) on Bond Elut C18 cartridges. Since the sample preparation procedure was not selective to the analytes of interest, exploiting second-order advantage to obtain concentrations of individual analytes in the presence of uncalibrated interfering compounds seemed necessary. Appropriate pre-processing steps have been applied to correct background signals and the effect of retention time shifts. Transferred calibration data set obtained from standardization of solvent based calibration data has been used in prediction step. The results of PARAFAC on a set of spiked and naturally contaminated pistachio nuts indicated that the four aflatoxins could be successfully determined. The method was validated and multivariate analytical figures of merit were calculated. The advantages of the proposed method are using a low-cost SPE step relative to standard method of aflatoxin analysis (immune affinity column assay), a unique and simple isocratic elution program for all samples and a calibration transfer for saving both chemicals and time of analysis. This study show that coupling of SPE-HPLC-DAD with PARAFAC as a powerful second-order calibration method can be considered as an alternative method for resolution and quantification of aflatoxins in the presence of unknown interferences obtained through analysis of highly complex matrix of pistachio samples and cost per analysis can be reduced significantly.  相似文献   

19.
Univariate (zero-order), multivariate (first-order) and multiway (second-order) calibrations were assayed for the determination of vinegar acidity using a mechanized procedure based upon vibrational spectroscopy and the emerging multicommutation methodology. The second-order methodology relies on the use of a flow system based on multicommutation and binary sampling. The flow network comprises a set of three-way solenoid valves, computer-controlled to provide facilities to handle the sample and to generate a time-dependent pH gradient using two carrier solutions. The procedure is based on the volumetric fraction variation approach that maintains the same volume of sample solution and dynamically varies its pH. The analysis of second-order absorbance-pH matrices was performed using parallel factor analysis (PARAFAC). Results were compared with first-order absorbance data analyzed with linear calibration and partial least squares regression (PLS) and they were employed for a discussion of the relative advantages of the applied chemometric tools. As excellent accuracy is obtained without the need of any sample pre-treatment, the procedure can be fully mechanized (i.e., by means of an auto-sampler device). Accuracy of the different strategies assayed was assessed by comparing the results achieved with those obtained by titration reference procedure.  相似文献   

20.
Independently emerging fluorescence profiles of unknown, photochemically induced degradation products of several naturally non-fluorescent pesticides were monitored using single exposure excitation-emission fluorescence spectroscopy. Three-way parallel factor analysis (PARAFAC) was employed to uniquely resolve the pure fluorescent spectra of the overlapping photolysis products. The quantitative utility of EEM photolysis-based determinations was demonstrated by employing four-way PARAFAC models built from EEM time cubes of multiple fenvalerate samples. The 4-way PARAFAC models were then used to predict original pesticide concentrations resulting in conservative limit of detection and root mean square errors of calibration (RMSEC) of 3 microM each.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号