首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electroenzymatic glucose sensor based on a simple enzyme immobilization technique was constructed and tested. The glucose sensor measures glucose concentrations as changes of oxygen concentrations induced by enzymatic reactions. The immobilizing procedure was developed with the purpose of producing wearable biosensors for clinical use. Two types of biocompatible polymers, 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymerized with dodecyl methacrylate (PMD) and MPC copolymerized with 2-ethylhexyl methacrylate, were compared as a sensitive membrane of biosensors. The PMD enzyme membrane had a better response time. Linearity, reproducibility, effect of the concentrations of immobilized enzyme and drifts of sensor characteristics in long-term tests were also investigated. The linear characteristics were confirmed with glucose concentration from 0.01 to 2.00 mmol/l, with a coefficient of determination of 0.9999. The average output current for 1 mmol/l and the standard deviation were 0.992 and 0.0283 muA. Significant changes in the sensor's characteristics were not observed for 2 weeks when it was kept in a refrigerator at 4 degrees C. Because of the simple procedure, the enzyme immobilization method is not only useful for wearable devices but also other devices such as micro total analysis systems.  相似文献   

2.
The use of biotinylated alginate as an immobilization matrix of enzymes on the surface of the amperometric transducer is described herein. The model used is that of the well-established glucose detection. Several types of immobilization protocols were tested. In the exception of one protocol, biotin labeled glucose oxidase was shown to first require conjugation with avidin, before its immobilization onto a biotin-alginate gel matrix. The response of the biosensors to incremental additions of glucose, was measured by potentiostating the modified electrodes at 0.6 V/SCE. The permeability of the modified electrodes was thereafter measured by using rotating disk electrode (RDE) voltammetry with ferrocenemonocarboxylic acid as the electroactive probe.  相似文献   

3.
We report on the utilization of gold nanorods to create a highly responsive glucose biosensor. The feasibility of an amperometric glucose biosensor based on immobilization of glucose oxidase (GOx) in gold nanorod is investigated. GOx is simply mixed with gold nanorods and cross-linked with a cellulose acetate (CA) medium by glutaraldehyde. The adsorption of GOx on the gold nanorods is confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Circular dichroism (CD) and UV-spectrum results show that the activity of GOx was preserved after conjugating with gold nanorods. The current response of modified electrode is 10 times higher than that of without gold nanorods. Under optimal conditions, the biosensor shows high sensitivity (8.4 μA cm−2 mM−1), low detection limit (2 × 10−5 M), good storage stability and high affinity to glucose (). A linear calibration plot is obtained in the wide concentration range from 3 × 10−5 to 2.2 × 10−3 M.  相似文献   

4.
The immobilization and encapsulation of glucose oxidase (GOD) onto the mesoporous and the non-porous silica spheres prepared by co-condensation of tetraethylorthosilicate (TEOS) and (3-aminopropyl)trimethoxysilane (APTMS) in the water-in-oil (W/O) emulsion system were studied. The terminal amine group was used as the important functionality for GOD immobilization on the silica substrate. When only TEOS is used as a silica source, the disordered mesoporous silica microspheres are obtained. As the molar ratio of APTMS to TEOS (RAT) increases, the surface area and pore volume of the silica particles measured by nitrogen adsorption and desorption method and SEM decrease rapidly. Particularly, the largest change of the surface morphology is observed between RAT = 0.20 and RAT = 0.25. The amount and the adsorption time of immobilized enzyme were measured by UV spectroscopy. About 20 wt% of GOD was immobilized into the silica substrates above RAT = 0.60 and was completely adsorbed into the substrate of RAT = 0.80 with lapse of 4 h after addition. In the measurement of the thermal stability, GOD dissolved in buffer solution loses nearly all of its activity after 30 min at 65 °C. In contrast, GOD immobilized on the surface-modified silica particles still retains about 90% of its activity after the same treatment. At this temperature, the immobilized glucose oxidase retained half of its initial activity after 4 h. It is shown that the suitable usage of functionalizing agent like APTMS as well as the control of surface morphology is very important on the immobilization of enzyme.  相似文献   

5.
Kalaycı S  Somer G  Ekmekci G 《Talanta》2005,65(1):87-91
An electrode for glucose has been prepared by using an iodide selective electrode with the glucose oxidase enzyme. The iodide selective electrode used was prepared from 10% TDMAI and PVC according our previous study. The enzyme was immobilized on the iodide electrode by holding it at pH 7 phosphate buffer for 10 min at room temperature. The H2O2 formed from the reaction of glucose was determined from the decrease of iodide concentration that was present in the reaction cell. The iodide concentration was followed from the change of potential of iodide selective electrode. The potential change was linear in the 4×10−4 to 4×10−3 M glucose concentration (75-650 mg glucose/100ml blood) range. The slope of the linear portion was about 79 mV per decade change in glucose concentration. Glucose contents of some blood samples were determined with the new electrode and consistency was obtained with a colorimetric method. The effects of pH, iodide concentration, the amount of enzyme immobilized and the operating temperature were studied. No interference of ascorbic acid, uric acid, iron(III) and Cu(II) was observed. Since the iodide electrode used was not an AgI-Ag2S electrode, there was no interference of common ions such as chloride present in biological fluids. The slope of the electrode did not change for about 65 days when used 3 times a day.  相似文献   

6.
葡萄糖异构酶的固定化及其性质研究   总被引:2,自引:0,他引:2  
用分子沉积法,在多孔三甲胺基聚苯乙烯载体上成功地固定化了双层葡萄糖异构酶。结果表明,这种新固定化酶方法能使单位重量的因素化酶活力及蛋白载量成倍增加,活力达到1200IU/g湿胶,与吸附法相比,酶活力提高1倍,其半衰期与吸附法相比则基本相同,为45d,还确定了最佳固体化条件并测定了固定化酶的性质,固定化酶的最适反应温度比液相酶提高15℃,而最适pH值则没有改变,Km值与液相酶的相比有一定程度的增加,  相似文献   

7.
A miniaturized capillary electrophoretic (CE) microchip device for the simultaneous measurements of lactate and glucose is described. The new microchip bioassay protocol integrates an electrophoretic separation of lactate and glucose, post-column enzymatic reactions of these metabolites with their respective oxidase enzymes, and an amperometric (anodic) detection of enzymatically-liberated hydrogen peroxide at a gold-coated thick-film carbon detector. Factors influencing the response have been examined and optimized, and the analytical performance has been characterized. Applicability of the microchip assay to clinical samples, such as serum and blood, is demonstrated. The microchip protocol obviates cross enzymatic reactions and interferences from major oxidizable constituents common to dual glucose-lactate enzyme electrodes. Such ability to rapidly separate and quantitate lactate and glucose on a small microchip platform should find important clinical and biotechnological applications.  相似文献   

8.
Calixarenes and their derivatives may be a promising material for enzyme immobilization owing to their particular configuration, unique molecule recognition function and aggregation properties. In this paper, p-tert-butylthiacalix[4]arene tetra-amine (TC4TA) was first used as enzyme immobilization material. This attractive material was exploited for the mild immobilization of glucose oxidase (GOD) to develop glucose amperometric biosensor. GOD was strongly adsorbed on the TC4TA modified electrode to form TC4TA/GOD composite membrane. The adsorption mechanism was driven from the covalent bond between amino-group of TC4TA and carboxyl group of GOD and molecule recognition function of TC4TA. Amperometric detection of glucose was evaluated by holding the modified electrode at 0.60 V (versus SCE) to oxidize the hydrogen peroxide generated by the enzymatic reaction. The sensor (TC4TA/GOD) showed a relative fast response (response time was about 5 s), low detection limit (20 μM, S/N = 3), and high sensitivity (ca. 10.2 mA M−1 cm−2) with a linear range of 0.08–10 mM of glucose, as well as a good operational and storage stability. In addition, optimization of the biosensor construction, the effects of the applied potential as well as common interfering compounds on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

9.
A new nanomaterial was prepared by grafting a layer of sulfonated polyaniline network (SPAN-NW) on to the surface of multi-walled carbon nanotube (MWNT) and effectively utilized for immobilization of an enzyme and for the fabrication of a biosensor. SPAN-NW was formed on the surface of MWNT by polymerizing a mixture of diphenyl amine 4-sulfonic acid (DPASA), 4-vinyl aniline (VA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (APASA) in the presence of amine functionalized MWNT (MWNT-NH2). The MWNT-g-SPAN-NW was immobilized with glucose oxidase (GOx) to fabricate the SPAN-NW/GOx biosensor. MWNT-g-SPAN-NW/GOx electrode showed direct electron transfer (DET) for GOx with a fast heterogeneous electron transfer rate constant (ks) of 4.11 s− 1. The amperometric current response of MWNT-g-SPAN-NW/GOx biosensor shows linearity up to 9 mM of glucose, with a correlation coefficient of 0.99 and a detection limit of 0.11 μM (S/N = 3). At a low applied potential of − 0.1 V, MWNT-g-SPAN-NW/GOx electrode possesses high sensitivity (4.34 μA mM− 1) and reproducibility towards glucose.  相似文献   

10.
Direct electron transfer between active glucose oxidase (GOD) and a gold electrode was obtained when GOD was immobilized in poly(N-methylpyrrole) electrochemically prepared on the gold electrode. When electropolymerization was accomplished at 50 °C, after glucose addition, the cyclic voltammograms showed an increased oxidation peak at ca. ?0.45 V vs. Ag/AgCl. This potential corresponds to the oxidation potential for FADH2. Although the GOD becomes much less selective, a glucose-dependent current response is obtained.  相似文献   

11.
Luque GL  Rodríguez MC  Rivas GA 《Talanta》2005,66(2):467-471
The performance of amperometric glucose biosensors based on the dispersion of glucose oxidase (GOx) and copper oxide within a classical carbon (graphite) paste composite is reported in this work. Copper oxide promotes an excellent electrocatalytic activity towards the oxidation and reduction of hydrogen peroxide, allowing a large decrease in the oxidation and reduction overpotentials, as well as an important enhancement of the corresponding currents. Therefore, it is possible to perform the glucose biosensing at low potentials where there is no interference even in large excess of ascorbic acid, uric acid or acetaminophen. The influence of the copper oxide and glucose oxidase content in the paste on the analytical performance of the bioelectrode is discussed. The resulting biosensor shows a fast response, a linear relationship between current and glucose concentration up to 1.35 × 10−2 M (2.43 g L−1) and a detection limit of 2.0 × 10−5 M. The effect of the presence of the enzyme in the composite material on the dispersion of the copper oxide particles is also discussed.  相似文献   

12.
Direct electrochemistry of glucose oxidase (GOx) has been achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1-butyl pyridinium hexafluophosphate ([BuPy][PF6]) as binder for the first time. A pair of reversible peaks is exhibited on GOx/CILE by cyclic voltammetry. The peak-to-peak potential separation (ΔEP) of immobilized GOx is 0.056 V in 0.067 M phosphate buffer solution (pH 6.98) with scan rate of 0.1 V/s. The average surface coverage and the apparent Michaelis–Menten constant are 6.69 × 10−11 mol·cm−2 and 2.47 μM. GOx/CILE shows excellent electrocatalytic activity towards glucose determination in the range of 0.1–800 μM with detection limit of 0.03 μM (S/N = 3). The biosensor has been successfully applied to the determination of glucose in human plasma with the average recoveries between 95.0% and 102.5% for three times determination. The direct electrochemistry of GOx on CILE is achieved without the help of any supporting film or any electron mediator. GOx/CILE is inexpensive, stable, repeatable and easy to be fabricated.  相似文献   

13.
An optical glucose biosensor using a swim bladder membrane as an enzyme immobilization platform and an oxygen-sensitive membrane as an optical oxygen transducer has been developed. During the enzymatic reaction, glucose is oxidized by glucose oxidase with a concomitant consumption of dissolved oxygen resulting in an increase in the fluorescence intensity of the optical oxygen transducer. The fluorescence intensity is directly related to the glucose concentration. The effects of pH, temperature, buffer concentration, and selectivity have been studied in detail. The immobilized enzyme retained 80% of its initial activity after being kept for more than 10 months at 4°C. The glucose biosensor has been successfully applied to the determination of glucose content in human blood serum and urine samples. Martin M.F. Choi was on sabbatical leave at The University of North Carolina at Chapel Hill from July 2004 to July 2005.  相似文献   

14.
Glucose and sucrose are simultaneously determined by using a glucose-sensing enzyme electrode combined with a cell that contains immobilized invertase. The electrode current changes linearly with time for several minutes from ca. 1 min after the addition of a glucose-sucrose mixture. The concentration of sucrose (60 μM-6 mM) is determined from the rate of current change in the linear region, and that of glucose (5 μM-1 mM) is determined by extrapolating the straight current-time line to t=0.45 min and by measuring the intercept on the vertical (current) axis at t=0.45 min. The relative standard deviations are 1.8% for glucose and 3.7% for sucrose (n=10). More than 20 food samples can be analysed in 1 h.  相似文献   

15.
We report on a novel glucose biosensor based on the immobilization of glucose oxidase (GOx) on a Prussian blue modified nanoporous gold surface. The amperometric glucose biosensor fabricated in this study exhibits a fast response and the very low detection limit of 2.5 μM glucose. The sensitivity of the biosensor was found to be very high, 177 μA/mM; the apparent Michaelis–Menten constant is calculated to be 2.1 mM. In addition, the biosensor has good reproducibility and remains stable over 60 days. The anti-interference ability of the biosensor was also assessed, showing little interference from possible interferents such as ascorbic acid (AA), acetaminophen (AP) and uric acid (UA).  相似文献   

16.
Macroporous conducting polymer films were prepared by the electrochemical copolymerization of 3-methylthiophene and thiophene-3-acetic acid on the ITO-coated glass plates bearing different sizes of polystyrene template particles, and enzyme electrodes were fabricated by covalent immobilization of glucose oxidase on the macroporous copolymer films. It was found that the doping level and conductivity of the copolymer films was significantly affected by the treatment with solvent to remove the polystyrene particles, which was considered to result in deterioration in amperometric glucose-responding property of the enzyme electrodes fabricated with the copolymer films. Three-dimensionally ordered macroporous structure on the copolymer films led to enhancement of amperometric response of the enzyme electrodes, and this effect was attributed to the geometry of the interconnected channel structure formed by the linkage of macropores. It was suggested that the amperometric response of the enzyme electrodes was determined by whether the interconnected channel structure on the copolymer films had long distance regularity and a proper size to allow the enzyme and electron-mediator molecules to penetrate into the interior pores of the copolymer film. In particular, the interconnected channel structure seemed to play an important role in the electron-transfer reaction between the mediator molecules and the surface of electrodes.  相似文献   

17.
Colloid Au (Au(nano)) with a diameter of about 10 nm was prepared and used in combination with dihexadecylphosphate (DHP) to immobilize glucose oxidase (GOD) onto the surface of a graphite electrode (GE). The direct electrochemistry of GOD confined in the composite film was investigated. The immobilized GOD displayed a pair of redox peaks with a formal potential of -0.475 mV in pH 7.0 O(2)-free phosphate buffers at scan rate of 150 mV s(-1). The GOD in the composite film retained its bioactivity and could catalyze the reduction of dissolved oxygen. Upon the addition of glucose, the reduction peak current of dissolved oxygen decreased, which could be developed for glucose determination. A calibration linear range of glucose was 0.5-9.3 mM with a detection limit of 0.1 mM and a sensitivity of 1.14 microA mM(-1). The glucose biosensor showed good reproducibility and stability. The general interferences that coexisted in human serum sample such as ascorbic acid and uric acid did not affect glucose determination.  相似文献   

18.
An enzymatic method for the sequential determination of lactic acid and glucose is proposed. Sample matrix effects are overcome by using an internally coupled valve system. The problem arising from the dissimilar concentrations of the two analytes commonly occurring in serum is solved by applying the scale-expansion technique with a diode-array spectrophotometer. The determination ranges are 10–400 and 2–100 μg ml?1 for lactic acid and glucose, respectively (r.s.d. 1.63 and 2.30%; n=11). Mixtures of these compounds in ratios up to 1:10 can be readily resolved, which allows their determination in serum with good results.  相似文献   

19.
The structure and properties of the blend of regenerated silk fibroin (RSF) and poly(vinyl alcohol) (PVA) were investigated. The two polymers in the blend are in the state of phase segregation. Infrared (IR) spectra indicate that the RSF in the blend maintains its intrinsic properties, thus, ethanol treatment can transfer silk I structure of RSF to silk II structure. The water absorption property and mechanical property of the blend are improved in comparison with those of RSF. The blend maintains the major merit of RSF, that is, it can immobilize glucose oxidase on the basis of the conformational transition from silk I structure to silk II structure. The properties of the immobilized enzyme are examined. Moreover, the second generation of glucose sensor based on the immobilized enzyme is fabricated and it has a variety of advantages including easy maintenance of enzyme, simplicity of construction, fast response time and high stability.  相似文献   

20.
First-, second- and third-generation amperometric glucose enzyme electrodes were compared under flow-injection and steady-state conditions for the monitoring of undiluted whole blood. First-generation electrodes, based on the detection of hydrogen peroxide at a platinum electrode, are generally unsuitable because of the eventual poisoning of the electrode and because of their susceptibility to oxygen variation. Second-generation electrodes in which a mediator is used for the reoxidation of glucose oxidase are more suitable for the analysis of whole blood under both steady-state and flow-injection conditions. However, the choice of mediator is important. The best results with regard to linear range and stability were obtained with tetrathiafulvalene, whereas dimethylferrocene required considerable pretreatment before use. A third-generation electrode based on tetrathiafulvalene-tetracyanoquinodimethane where direct oxidation of glucose oxidase occurs also proved useful but showed lower stability and a smaller dynamic range compared with the second-generation devices. Flow-injection and steady-state studies were carried out using wall-jet cell geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号