首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, a novel La(III) membrane sensor based on 8-amino-N-(2-hydroxybenzylidene)naphthylamine (AIP) is presented. This electrode reveals good selectivity for La3+ over a wide variety of lanthanides metal ions. Theoretical calculations and conductance study of AIP to lanthanum and some other metal ions were carried out and confirmed selectivity toward La(III) ions. The electrode comprises 7% AIP, 30% PVC, 61% NPOE and 2% KTpClPB. The sensor displays a linear dynamic range between 1.0 × 10−7 and 1.0 × 10−1 M, with a nice Nernstian slope of 20.3 ± 0.3 mV per decade and a detection limit of 8.0 × 10−8 M. The potentiometric response is independent of pH in the range of 4.0-9.0. The proposed sensor posses the advantage of short response time, and especially, very good selectivity towards a large number of cations, such as Sm(III), Ce(III, Pr(III), Yb(III) and Hg(II), low detection limit and wide linear dynamic range in comparison with former ones. The electrode can be used for at least seven weeks without any considerable divergence in the potentials. It was used as an indicator electrode in the potentiometric titration of La(III) ions with EDTA. The sensor was applied to the determination of La(III) ions concentration in binary mixtures. It was also applied for the determination of fluoride ions in mouth wash preparations.  相似文献   

2.
A highly selective membrane electrode based on nickel(II)-1,4,8,11,15,18,22,25-octabutoxyphthalocyanine (NOBP) is presented. The proposed electrode shows very good selectivity for thiocyanate ions over a wide variety of common inorganic and organic anions. The sensor displays a near Nernstian slope of −58.7 ± 0.6 mV per decade. The working concentration range of the electrode is 1.0 × 10−6 to −1.0 × 10−1 M with a detection limit of 5.7 × 10−7 M (33.06 ng/mL). The response time of the sensor in whole concentration ranges is very short (<10 s). The response of the sensor is independent on the pH range of 4.3-9.8. The best performance was obtained with a membrane composition of 30% PVC, 65% dibutyl phthalate, 3% NOBP and 2% hexadecyltrimethylammonium bromide. It was successfully applied to direct determination of thiocyanate in biological samples, and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution.  相似文献   

3.
A new PVC membrane electrode for manganese(II) ion based on a recently synthesized Schiff base of 5-[(4-nitrophenylazo)-N-hexylamine]salicylaldimine is reported. The electrode exhibits a Nernstian response for Mn2+ ions over a wide concentration range (4.0 × 10−7 to 1.8 × 10−2 mol L−1) with a slope of 30.1 (±1.0). The limit of detection is 1.0 × 10−7 mol L−1. The electrode has a fast response time (∼10 s), a satisfactory reproducibility and relatively long life time. The proposed sensor revealed good selectivities over a wide variety of other cations include hard and soft metals. This electrode could be used in a pH range of 4.5-7.5. It was used as an indicator electrode in potentiometric titration of manganese(II) ions with EDTA solution.  相似文献   

4.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on 1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane-Ni(II) as a membrane carrier with unique selectivity toward thiocyanate is reported. The influence of membrane composition, pH and foreign anions were investigated. The sensor exhibits a Nernstian response for thiocyanate over a wide concentration range of 3.3×10−6 to 0.10 M, with a slope 58.4±0.3 mV per decade. The limit of detection is 3.0×10−6 M SCN. The sensor has a response time of <20 s and can be used for at least 2 months without any considerable divergence in potential. The proposed electrode shows fairly a good discriminating ability towards SCN ion in comparison to other anions. It was successfully applied to direct determination of thiocyanate in urine and saliva and it was also used as an indicator electrode in titration of thiocyanate with Ag+ ions.  相似文献   

5.
In this work, a highly selective and sensitive monohydrogen phosphate membrane sensor based on a molybdenum bis(2-hydroxyanil) acetylacetonate complex (MAA) is reported. The sensor shows a linear dynamic range between 1.0 × 10−1 and 1.0 × 10−7 M, with a nice Nernstian behavior (−29.5 ± 0.3 mV decade−1) in pH of 8.2. The detection limit of the electrode is 6.0 × 10−8 M (∼6 ppb). The best performance was obtained with a membrane composition of 32% poly(vinyl chloride), 58% benzyl acetate, 2% hexadecyltrimethylammonium bromide and 8% MAA. The sensor possesses the advantages of short response time, low detection limit and especially, very good selectivity towards a large number of organic and inorganic anions including salicylate, citrate, tartarate, acetate, oxalate, fluoride, chloride, bromide, iodide, sulfite, sulfate, nitrate, nitrite, cyanide, thiocyanate, perchlorate, metavanadate, and bicarbonate ions. The electrode can be used for at least 10 weeks without any considerable divergence in its slope and detection limit. It was used as an indicator electrode in potentiometric titration of monohydrogenphosphate ion with barium chloride. The proposed sensor was successfully applied to direct determination of monohydrogenphosphate in two fertilizer samples (NPK).  相似文献   

6.
Mittal SK  Kumar SK  Sharma HK 《Talanta》2004,62(4):801-805
A new ion-selective electrode (ISE) based on dicyclohexano-18-crown-6 (DC18C6) as a neutral carrier is developed for lanthanum(III) ions. The electrode comprises of dicyclohexano-18-crown-6 (6%), PVC (33%), and ortho-nitrophenyl octyl ether (o-NPOE) (61%). The electrode shows a linear dynamic response in the concentration range of 10−6 to 10−1 M with a Nernstian slope of 19 mV per decade and a detection limit as 5×10−7 M. It has a response time of <30 s and can be used for at least 5 months without any significant divergence in potentials. The selectivity coefficients for mono-, di-, and trivalent cations indicate good selectivity for La(III) ions over a large number of interfering cations. The sensor has been used as an indicator electrode in the potentiometric titrations of La(III) with EDTA. The membrane is successfully applied in partially non-aqueous medium. It can be used in the pH range 4-9.  相似文献   

7.
A plasticized poly (vinyl chloride) membrane electrode based on 1,3-bis(2-cyanobenzene)triazene (CBT) for highly selective determination of platinum(II) (in PtCl42− form) is developed. The electrode showed a good Nernstian response (29.8 ± 0.3 mV decade−1) over a wide concentration range (1.0 × 10−6 to 1.0 × 10−2 mol L−1). The limit of detection was 5.0 × 10−7 mol L−1. The electrode has a response time of about 40 s, and it can be used for at least 1 month without observing any considerable deviation from Nernstian response. The proposed electrode revealed an excellent selectivity toward platinum(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions, and it could be used in the pH range of 3.2-5.1. The practical utility of the electrode has been demonstrated by its use in determination of platinum ion in, alloy, tap, mineral and river water samples.  相似文献   

8.
A novel coated wire electrode (CWE) for Al(III) ions is described based on 2-(1H-benzo[d]imidazole-1-yl)-1-phenylethanoneoxime as a new ionophore in carbon-PVC composite. The sensor exhibits significantly enhanced selectivity toward Al3+ ions over the concentration range 4.3 × 10−7 to 5.0 × 10−2 M with a lower detection limit of 2.5 × 10−7 M and a Nernstian slope of 19.41 ± 0.52 mV decade−1 of aluminium activity. This sensor has a short response time of about 10 s and is reproducible and stable for at least forty-five days. This proposed CWE which is designed for the first time revealed good selectivity for Al(III) over a wide variety of other cations. The performance of the sensor is best in the pH range of 3.1-5.5 and it also works well in partially non-aqueous medium. Moreover, the assembly has been successfully used as an indicator electrode in the potentiometric titration of aluminium (III) against EDTA and also in determining Al(III) quantitatively in pharmaceutical and mineral water samples.  相似文献   

9.
In this study, a new poly(vinyl chloride) (PVC) membrane sensor for La3+ ion based on 2,2′-dithiodipyridine as an ion carrier was prepared. This electrode revealed good selectivity for La3+ over a wide variety of other metal ions. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, the amount of additive and concentration of internal solution on the potential response of La3+ sensor were investigated. The electrode exhibited a Nernstian slope of 20.0 ± 1.0 mV per decade of La3+ over a concentration range of 7.1 × 10−6 to 2.2 × 10−2 M of La3+ in the pH range 3.3-8.0. The response time was about 7 s and the detection limit was 3.1 × 10−6 M. The electrode can be used for at least 2 months without a considerable divergence in potential. The proposed electrode was used as an indicator electrode in potentiometric titration of oxalate and fluoride ions and was applied for determination of F ion in mouthwash solution.  相似文献   

10.
This paper demonstrates the application of composite multi-walled carbon nanotube (MWNT) polyvinylchloride (MWNT-PVC) based on 1,5-diphenylcarbazide as chromium ionophore in potentiometric measurement. The sensor shows a good Nernstian slope of 19.52 ± 0.40 mV/decade in a wide linear range concentration of 6.3 × 10−8 to 1.0 × 10−2 M for Cr(NO3)3. The detection limit of this electrode was found to be 3.2 × 10−8 M of Cr(NO3)3 and is applicable in a pH range of 3.0-6.8. It has a short response time of about 10 s. This chromium electrode has a good selectivity over 16 various metal ions. The practical analytical utility of this electrode was demonstrated by measurement of Cr(III) in drinking water and mineral water samples without any serious preliminary pre-treatment and chromium in multivitamin.  相似文献   

11.
Solution studies on the binding properties of N-2,4-dimethylphenyl-N′-ethylformamidine (amitraz) toward nine lanthanide ions including lanthanum, cerium, neodium, samarium, europium, gadolinium, terbium, dysprosium, ytterbium and some other transition and heavy metal ions such as copper, lead, cobalt, nickel ions, showed a selective 1:1 complexation between amitraz and lanthanum ions. Consequently, amitraz was applied as an ion carrier in construction of a novel poly(vinyl chloride) membrane sensor for La(III). The sensor has a linear dynamic range of 1.0 × 10−1 to 1.0 × 10−7 M with a Nernstian slope of 19.8 ± 0.2 mV per decade and a detection limit of 8.0 × 10−8 M. The proposed sensor displays a fast response time (<8 s), and can be used for at least 2 months without any considerable divergences in the potentials. The La(III) membrane sensor revealed comparatively good selectivity with respect to most of cations including alkaline, alkaline earth, and some transition and heavy metal ions. It could be used in a pH range of 3.0-9.0. The proposed membrane electrode was used as an indicator electrode in the potentiometric titration of La(III) ions with an EDTA solution, and also in the determination of fluoride concentration in some mouth wash preparations.  相似文献   

12.
A novel PVC-based membrane sensor based on vanadyl salophen (VNSP) for determination of trace amounts of monohydrogenphosphate (MHP) ions is introduced. The electrode revealed Nernstian response towards monohydrogenphosphate over the wide concentration range from 1.0×10−1 to 1.0×10−6 M at the pH of 8.2. The effect of solvent mediator, cationic additives and amount of ion-carrier on the behavior of the sensor was investigated. The sensor shows a short response time (<20 s) in the whole concentration ranges. The selectivity of the electrode is very high, and it can be used for detection of trace amounts of monohydrogenphosphate in the presence of large amounts of other anions. The detection limit of the electrode was 5.0×10−7 M (48 ng/ml) and it could be used for 14 weeks without any measurable changes in the slope. The potentiometric selectivity coefficients data revealed negligible interference from 16 common anions. It was successfully applied for the direct determination of monohydrogenphosphate in fertilizer samples and, as an indicator electrode, in potentiometric titration of HPO42− ion with barium nitrate.  相似文献   

13.
Novel ionophore, C-thiophenecalix[4]resorcinarene (I) has been synthesized and characterized by IR, NMR and C, H, N analysis. Poly(vinyl chloride) (PVC) based membranes of ionophore (I) using dibutylphthalate (DBP), dioctylphthalate (DOP), 1-chloronapthalene (CN), tris(2-ethylhexyl) phosphate (TEHP) and bis(2-ethylhexyl)sebacate (DOS) as plasticizing solvent mediators were prepared and used as Cr selective sensors. Of the various sensors prepared, the one with membrane composition 2:66:120 mg (I: PVC: DBP) exhibited the best performance. This sensor works well over a wide concentration range 5.6 × 10−6-1.0 × 10−1 M (detection limit ∼ 0.30 ppm) with Nernstian compliance (29.0 mV per decade) between pH 6.5-10.0 with a fast response time of ∼13 s. The selectivity coefficient values as determined by fixed interference method (FIM) indicate excellent selectivity for Cr ions over a large number of anions. The sensor exhibits adequate shelf-life ( ∼5 months) with good reproducibility (S.D. ± 0.2 mV). The sensor has been used in the potentiometric titration of chromate with Pb(II). Determination of chromium in electroplating waste using the sensor was successfully achieved.  相似文献   

14.
The development of a highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with alternated layers of iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) and cobalt(II) tetrasulfonated phthalocyanine (CoTSPc) is described. The modified electrode showed an excellent catalytic activity and stability for the nitrite oxidation decreasing the peak potentials about 200 mV toward less positive values and presenting much higher peak currents than those obtained on the bare GC electrode. A linear response range of 0.2-8.6 μmol l−1, with a sensitivity of 0.37 μA l μmol−1 and detection limit of 0.04 μmol l−1 were obtained with this sensor. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was verified to be 1.4% for 10 measurements of 0.2 μmol l−1 nitrite solution. Interference caused by common ions has been investigated in simulated mixtures containing high concentration level of interfering ions and the sensor was found to be tolerant against these ions. The developed sensor was applied for the nitrite determination in water samples and the results were in agreement with those obtained by a comparative method described in the literature. The average recovery for these samples was 100.1 (±0.7)%.  相似文献   

15.
A PVC membrane electrode for copper ion based on 1,3-dithiane,2-(4-methoxy phenyl) as ionophore and o-nitrophenyl octyl ether as a plasticizer is demonstrated. The electrode exhibits a Nernstian slope of 29.5±1 mV per decade in a linear range of 3.0×10−6 to 5.0×10−2 M for Cu2+ ion. The detection limit of this electrode is 1.0×10−6 mol/l. This sensor has a very short response time of about 5 s and could be used in a pH range of 4.0-7.0. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully applied as an indicator electrode for the potentiometric titration of copper ion with EDTA and for the direct determination of copper in river water.  相似文献   

16.
Pankaj Kumar 《Talanta》2009,77(3):1057-234
A new poly(vinyl chloride)-based membranes containing p-(4-n-butylphenylazo)calix[4]arene (I) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and dibutyl(butyl)phosphonate in the ratio 10:100:1:200 (I:DBBP:NaTPB:PVC) (w/w) was used to fabricate a new cobalt(II)-selective sensor. It exhibited a working concentration range of 9.2 × 10−6 to 1.0 × 10−1 M, with a Nernstian slope of 29.0 ± 1.0 mV/decade of activity and the response time of 25 s. This sensor shows the detection limit of 4.0 × 10−6 M. Its potential response remains unaffected of pH in the range, 4.0-7.2, and the cell assembly can be used successfully in partially non-aqueous medium (up to 10%, v/v) without significant change in the slope of working concentration range. The sensor has a lifetime of about 3 months and exhibits excellent selectivity over a number of mono-, bi-, and tri-valent cations including alkali, alkaline earth metal, heavy and transition metal ions. It can be used as an indicator electrode for the end point determination in the potentiometric titration of cobalt ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of cobalt ion concentration in real samples.  相似文献   

17.
A polyvinyl chloride (PVC) based membrane sensor for cerium ions was prepared by employing N,N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine as an ionophore, oleic acid (OA) as anion excluder and o-nitrophenyloctyl ether (o-NPOE) as plasticizer. The plasticized membrane sensor exhibits a Nernstian response for Ce(III) ions over a wide concentration range (1.41 × 10−7 to 1.0 × 10−2 M) with a limit of detection as low as 8.91 × 10−8 M. It has a fast response time (<10 s) and can be used for 4 months. The sensor revealed a very good selectivity with respect to common alkali, alkaline earth and heavy metal ions. The response of the proposed sensor is independent of pH between 3.0 and 8.0. It was used as an indicator electrode in potentiometric titration of fluoride, carbonate and oxalate anions and determination of cerium in simulated mixtures.  相似文献   

18.
Hong-Yuan Luo  Chun-Yan Li 《Talanta》2007,72(2):575-581
The design and synthesis of a porphyrin-appended terpyridine, 5-(4-([2,2′:6′,2″]-terpyridin-4-yl-carboxyamidyl)phenyl)-10,15,20-triphenylporphyrin (H2TPPTPy) and its application as potential fluoroionophore for recognition of metal ions are reported. For preparation of the fluoroionophore, a novel simple strategy with improved total yield has been applied for the synthesis of 2,2′:6′,2″-terpyridine-4′-carboxylic acid as a ligand. H2TPPTPy shows chelation-enhanced fluorescence effect with cadmium ion via the interruption of photoinduced electron transfer (PET) process, which has been utilized as the basis of the fabrication of the Cd(II)-sensitive fluorescent chemosensor. The analytical performance characteristics of the proposed Cd(II)-sensitive chemosensor were investigated. It shows a linear response toward Cd(II) in the concentration range of 3.2 × 10−6 to 3.2 × 10−4 M with a limit of detection of 1.2 × 10−6 M. The chemosensor shows good selectivity for Cd(II) over a large number of cations, such as alkali, alkali earth and transitional metal ions except Cu(II) and Zn(II). The sensor has been used for determination of Cd(II) in water samples with satisfactory recoveries.  相似文献   

19.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

20.
Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone (BHAB) was used as new N-N Schiffs base which plays the role of an excellent ion carrier in the construction of a Cu(II) membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 55% o-nitrophenyloctyl ether (NPOE), 7% BHAB and 8% oleic acid (OA). This sensor shows very good selectivity and sensitivity towards copper ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition and pH and influence of additive anionic on the response properties of electrode were investigated. The electrode exhibits a Nernstian behavior (with slope of 29.6 mV per decade) over a very wide concentration range (5.0 × 10−8 to 1.0 × 10−2 mol L−1) with a detection limit of 3.0 × 10−8 mol L−1 (2.56 ng mL−1). It shows relatively fast response time, in whole concentration range (<15 s), and can be used for at least 12 weeks in the pH range of 2.8-5.8. The proposed sensor was successfully used to determination of copper in different water samples and as indicator electrode in potentiometric titration of copper ion with EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号