首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, an infrared (IR) high temperature cell was used, in combination with a Fourier transform infrared (FTIR) spectrometer for the development of an alternative temperature-programmed desorption (TPD) procedure. Three different adsorbates, i.e., benzene, toluene and ethylbenzene were non-isothermally desorbed from two zeolites H-ZSM-5 and H-Beta. The FTIR-TPD profiles were fitted with the help of the complementary error function. The fitting process was carried out with the help of a computer program which allows us to calculate two parameters, the temperature, T0 (K) and the temperature range ΔT (K), which, in conjunction with the complementary error function, characterizes the FTIR-TPD profile. Was found that the parameter T0 is linked with the adsorption energy of the adsorbate in the zeolite and the parameter ΔT was correlated with the transport process of the desorbed molecules inside the zeolites during the desorption process and with the presence of more than one type of adsorption sites. In conclusion, was confirmed that the FTIR-TPD methodology is appropriate for in situ observation of adsorbed molecules on zeolites, and that this technique makes available information concerning the adsorbed state of guest molecules in non-isothermal desorption.  相似文献   

2.
Fourier Transform Infrared (FTIR) and Raman spectroscopic techniques were used to perform a comparative study of the spectral profiles of single-base, double-base and triple-base smokeless gunpowders. Preliminary results based on visual comparison of the spectra point out that spectra obtained by both vibrational techniques were useful for a rapid identification of gunpowders containing dinitrotoluene as one of the major components and triple-base gunpowders. Additionally, the Raman spectra of gunpowders with diphenylamine in its primary composition showed a characteristic band, assigned to 2-nitro-diphenylamine, allowing the identification of this type of gunpowders.  相似文献   

3.
The use of a bench top FTIR spectrometer for near infrared Fourier transform Raman spectroscopy is demonstrated. The use of near infrared excitation results in fluorescence free Raman spectra allowing previously difficult samples to be measured.  相似文献   

4.
Preliminary results for a volatile organic compound (VOC) sensor based on surface enhanced Raman spectroscopy (SERS) are described. The sensor is comprised of a SERS substrate mounted on a thermoelectric cooler (TEC). The SERS substrate is chemically modified with a thiol coating that prevents oxidation of the roughened silver surface and attracts the analyte of interest to the SERS surface. Using this sensor, detection of chlorinated solvents, aromatic compounds, and methyl t-butyl ether (MTBE) is demonstrated.  相似文献   

5.
A relatively noninvasive method consisting of a face mask sampling device, solid-phase microextraction (SPME) fibers, and a gas chromatography-mass spectrometry (GC-MS) for the identification of volatile organic compounds (VOCs) in bovine breath was developed. Breath of three morbid steers with respiratory tract infections and three healthy steers were sampled seven times in 19 days for 15 min at each sampling. The breath VOCs adsorbed on the divinylbenzene (DVB)-Carboxen-polydimethyl siloxane (PDMS) 50/30 microm SPME fibers were transported to a laboratory GC-MS system for separation and identification with an in-house spectral library of standard chemicals. A total of 21 VOCs were detected, many of them for the first time in cattle breath. Statistical analyses using Chi-square test on the frequency of detection of each VOC in each group was performed. The presence of acetaldehyde (P < or = 0.05) and decanal (P < or = 0.10) were associated more with clinically morbid steers while methyl acetate, heptane, octanal, 2,3-butadione, hexanoic acid, and phenol were associated with healthy steers at P < or = 0.10. The results suggest that noninvasive heath screening using breath analyses could become a useful diagnostic tool for animals and humans.  相似文献   

6.
The process of natural oxidation of two low-rank coals exposed to the atmosphere for 11 months has been studied by Fourier transform infrared (FT-IR) spectroscopy. The study was carried out on samples taken at different time intervals and additionally from zones where signs of high oxidation and self-ignition were detected. The aliphatic hydrogen (3000-2800 cm−1) and oxygen-containing structures (1800-1500 cm−1) regions of the spectra were examined by curve-fitting analysis and a series of structural parameters based on ratios of integrated absorbance areas of curve-fitted bands were established. The aliphatic hydrogen content of samples tended to decrease with increasing time of storage and carboxyl groups only increased slightly under conditions of low pile activity. When oxidation and self-ignition processes took place, the structural changes were more significant. Aliphatic structures decreased drastically and net production of oxygen-containing structures was observed. Aliphatic hydrogen content evaluated from integrated absorbance measurements of normalized spectra and the CO/aliphatic hydrogen ratio seemed to be very sensitive in detecting signs of weathering even at very low levels of activity.  相似文献   

7.
8.
9.
A simple and fast analytical procedure was developed for the determination of caffeine in black tea leaves. The method is based on multiple linear regression treatment of Fourier transform infrared spectrometric data obtained in the wave number range 1800–1300 cm−1 after extraction of caffeine in CHCl3 from tea samples, wetted with an aqueous solution of NH3 (0.1 M). The procedure requires no complex sample preparation. It provided a limit of detection of 0.035 mg/ml, a sampling frequency of 6 h−1 and a coefficient of variation of 0.8% for five independent measurements of a tea sample with 3.68% w/w caffeine content. This procedure provides a drastic reduction in the consuming organic solvent for each sample compare to that of the reference chromatographic determination. The accuracy of technique is evaluated by comparing the obtained results with those of a reference HPLC technique. An average value of 3.60±0.07% w/w was obtained by HPLC for a powdered tea sample which is compromising when is compared to 3.68±0.03% (w/w) obtained by this FTIR technique.  相似文献   

10.
Polyacrylate polymer (PA) has been widely applied in coating products for decades. Recently, it has been used in controlled-release fertilizers. Nano FeIII-tannic acid modified PA (PA-Fe) provides a better nutrient controlled release performance than conventional PA. In this work, a preliminary database of molecular and elemental information about the polymer was obtained using FTIR-PAS (Fourier transform infrared photoacoustic spectroscopy) and LIBS (laser-induced breakdown spectroscopy), respectively. The PA-Fe polymer contained more hydrophobic groups (–CH3) and fewer hydrophilic groups (–COOR, –COOH) than PA. More elements were detected for PA-Fe than PA. LIBS was useful to identify and classify PA and PA-Fe samples using principal component analysis. The combination of spectroscopic results and a film formation process model explained the lower nutrient release rate of PA-Fe. These results showed the strong analytical capabilities of FTIR-PAS combined with LIBS for identifying and characterizing modified PA.  相似文献   

11.
A new vapour-phase manifold has been developed to determine trimethylamine (TMA) in fish and cephalopod samples by Fourier transform infrared (FT-IR) spectroscopy. Samples were treated off-line for 1 h with trichloroacetic acid (TCA), filtered and washed. The obtained extracts were aspirated and alkalinized with NaOH 2.0 M, in an on-line system. TMA was separated from the solution in a gas phase separator and then transported by means of a nitrogen carrier into a home made 10 cm pathlength IR gas cell, where the corresponding FT-IR spectra were acquired by accumulating 30 scans per spectrum with 2 cm−1 nominal resolution. The method was applied to the determination of TMA in natural samples providing concentration values statistically comparables with those obtained by a head space gas chromatography (HS-GC) reference procedure. The sample throughput by FT-IR is increased by a factor of 6 as compared with HS-GC.  相似文献   

12.
This paper compares two analytical methods for determining levels of 90 volatile organic compounds (VOCs) commonly found in industrial and urban atmospheres. Both methods are based on two official methods for determining benzene levels and involve collecting samples by active adsorptive enrichment on solid sorbents. The first method involves solvent extraction and uses activated charcoal as a sorbent. After sampling, the sorbent is extracted with 1 mL of carbon disulfide and then 1 μL of the extract is analysed in a GC-MS. The second method involves thermal desorption (TD) and uses Tenax TA and Carbograph 1TD as sorbents, which allows the whole sample to be analysed. In general, the thermal desorption method showed the best repetitivity and recovery and the lowest limit of detection and quantification for all target compounds. Because of its lower sensitivity, the solvent extraction method needs the preconcentration of large sample volumes of air (720 L vs. 2.64 L for the thermal desorption method) to yield similar limits of detection.The performance of both methods in real samples was tested in a location near to a petrochemical complex. The results of the 24-h samples for the solvent extraction method were compared with the average of 12 2-h samples for the TD method. In some cases, both methods found differences in the VOC concentrations, especially in those compounds whose concentrations fluctuate significantly during the day.  相似文献   

13.
Breast cancer detection by Fourier transform infrared spectrometry   总被引:1,自引:0,他引:1  
Fourier transform infrared spectra of 75 biopsies from 55 cases of breast carcinoma were studied in comparison with histo-morphometry. The spectra of carcinomatous tissues are very different from those of normal tissues. There are evident correlations between the intensity of some infrared absorption bands and the volume density of malignant cells measured by optical microscopy [7]. Very high correlation coefficients are observed for phosphate monoester and phosphodiester bands; significant correlation coefficients are also observed for amide I and II bands.  相似文献   

14.
杨继  杨柳  朱文辉  吴亿勤  曹秋娥 《色谱》2010,28(10):929-934
采用热重分析-单滴微萃取-气相色谱-质谱(TG-SDME-GC-MS)联用系统和傅里叶变换红外光谱,研究了咖啡酸的热解行为。设定热重分析仪5 ℃/min的升温速率及400 mL/min的氮气流量,在160~360 ℃温度范围内,采用乙醇对热解逸出物质进行单滴微萃取,然后利用GC-MS分离分析,监测了咖啡酸5种主要热解逸出产物相对含量随温度升高的动态变化情况。使用傅里叶变换红外光谱分析了咖啡酸所对应各失重点固体剩余物的特征官能团变化情况。结果表明,咖啡酸热失重的主要原因是在240~360 ℃产生大量的邻苯二酚,在200~220 ℃热解产生4-乙基邻苯二酚。另外,咖啡酸在230 ℃下已完全裂解。该方法的建立为温度连续上升模式下的物质热解行为分析提供了借鉴和参考。  相似文献   

15.
Gong X  Xiong X  Peng Y  Yang C  Zhang S  Fang X  Zhang X 《Talanta》2011,85(5):2458-2462
A simple-structure, low-power, and low-cost low temperature plasma (LTP) ionization source, coupled with mass spectrometry, for the online detection of indoor volatile organic compounds (VOCs) has been constructed in this work. Air, instead of noble gases, was employed as the discharging and carrier gas. And a custom-built AC high-voltage power supply with a total power consumption of 5 W, frequency of 2-4 kHz, and amplitude around 1-5 kVp-p was used. This LTP source is a soft ionization source. The initial performance of the ionization source has been evaluated by ionizing samples including alcohols, ketones, aldehydes and aromatics. These compounds cover most of the common air pollutants concerning people's health. It is well known that those plasmas generated by dielectric barrier discharge (DBD) produce significant amount of metastable species and electrons with mean energies greater than several electronvolt, but minimal fragmentation was observed in our work. Protonated ions are the dominant product for the VOCs detected after the ionization process. Further work has been conducted to confirm the detection feature of this source. The results are promising enough to ensure the novel LTP ionization source as an effective tool for the online detection of indoor VOCs.  相似文献   

16.
The application of resonance-enhanced multiphoton ionization (REMPI) spectroscopy for the ultrasensitive detection of molecules originating from laser desorption experiments performed on a variety of substrates is reviewed. Laser-induced desorption from surfaces is capable of producing intact gas-phase molecules, even from polar, non-volatile, high-molecular-weight and thermally labile substances. REMPI is a highly efficient and optically selective ionization method, which, coupled with laser desorption allows the direct chemical analysis of complex mixtures, without the need for previous sample purification and separation steps. The use of REMPI spectroscopy is discussed in two contexts: (1) for the direct chemical analysis of complex mixtures, e.g., environmental samples, by laser desorption/laser postionization mass spectrometry and (2) for measurements of internal state distribution of molecules laser-desorbed from sub-monolayers surface films to gain insight into the laser desorption mechanism.Presented at the 13th International Symposium on Microchemical Techniques (ISM), held in Montreux, Switzerland, May 16–20,1994  相似文献   

17.
Fourier transform infrared (FTIR) spectroscopic imaging is a relatively new method that has received great attention as a new field of analytical chemistry. The greatest benefit of this technique lies in the high molecular sensitivity combined with a spatial resolution down to a few micrometers. Another advantage is the ability to probe samples under native conditions, which allows new insights into samples without the need for fixation, stains, or an additional marker. Advances in instrumentation have made FTIR spectroscopic imaging the tool of choice for an increasing number of applications. The main applications are in the bioanalytical chemistry of cells and tissue, polymers, and recently as well as in homeland security. This report gives a short overview of current developments and recent applications. Figure FTIR image of a polymer blend reveals the chemical composition. Online Abstract Figure (365 KB).  相似文献   

18.
In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.  相似文献   

19.
Microcolumn liquid chromatography has been interfaced with infrared microspectrometry by means of a novel technique involving electrospray nebulization. The eluent from the LC column is subjected to a high positive potential relative to the surroundings and the electric field generated charges the surface of the emerging liquid causing it to disintegrate into charged droplets which are attracted to an earthed, infrared-transparent, zinc selenide deposition plate. Nitrogen sheath gas is used to evaporate the solvent in the droplets, and the separated components are deposited on the zinc selenide plate for subsequent analysis by means of a Fourier transform infrared microscope and spectrometer. Provided low flow rates (~4 μl/min) are used, total elimination of the solvent is achieved and easily identifiable infrared spectra can be measured from less than 500 pg of sample (caffeine).  相似文献   

20.
Natural organic matter (NOM) is a complex and non-uniform mixture of organic compounds which plays an important role in environmental processes. Due to the complexity, it is challenging to obtain fully detailed structural information about NOM. Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) has been demonstrated to be a powerful tool for providing molecular information about NOM, multiple ionization methods are needed for comprehensive characterization of NOM at the molecular level considering the ionizing selectivity of different ionization methods. This paper reports the first use of matrix assisted laser desorption/ionization (MALDI) method coupled with FT-ICR-MS for molecular characterization of NOM within a mass range of 200–800 Da. The mass spectral data obtained by MALDI were systematically compared with data generated by electrospray ionization (ESI). It showed that complementary molecular information about NOM which could not be detected by ESI, were provided by MALDI. More unsaturated and aromatic constituents of NOM with lower O/C ratio (O/C ratio < 0.5) were preferentially ionized in MALDI negative mode, whereas more polar constituents of NOM with higher O/C ratio were preferentially ionized in ESI negative mode. Molecular anions of NOM appearing at even m/z in MALDI negative ion mode were detected. The results show that NOM molecules with aromatic structures, moderate O/C ratio (0.7 > O/C ratio > 0.25) and lower H/C ratio were liable to form molecular anions at even m/z, whereas those with higher H/C ratio are more likely to form deprotonated ions at odd m/z. It is speculated that almost half of the NOM molecules identified by MALDI may be aromatic or condensed aromatic compounds with special groups which are liable to absorb electron from other molecules to generate free radical anions during MALDI ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号