首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo L  Lee HK 《Journal of chromatography. A》2011,1218(28):4299-4306
For the first time, an ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction (IL-LLL-SBME) was developed for the analysis of phenols in seawater samples. The ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), was used as the intermediary solvent for LLL-SBME, enhancing the extraction efficiency for polar analytes. In the procedure, the analytes were extracted from the aqueous sample into the ionic liquid intermediary and finally, back-extracted into an aqueous acceptor solution in the lumen of the hollow fiber. The porous polypropylene membrane acted as a filter to prevent potential interfering materials from being extracted, and no additional cleanup was required. After extraction, the acceptor solution could be directly injected into a high-performance liquid chromatographic system for analysis. Six phenols, 2-nitrophenol, 4-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were selected here as model compounds for developing and evaluating the method. The most influential extraction parameters were evaluated, including the ionic liquid, the composition of donor solution and acceptor solution, the extraction time and the extraction temperature, the effect of ionic strength, and the agitation speed. Under the most favorable extraction parameters, the method showed good linearity (from 0.05-50 to 0.5-50 μg/L, depending on the analytes) and repeatability of extractions (RSD below 8.3%, n=5). The proposed method was compared to conventional three-phase LLL-SBME and ionic liquid supported hollow fiber protected three-phase liquid-liquid-liquid microextraction, and showed higher extraction efficiency. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of phenols from environmental water samples.  相似文献   

2.
Three-phase solvent bar microextraction (TPSBME) technique is described for the quantitative determination of trace amounts of clenbuterol (CB) in urine samples using liquid chromatography (LC) and electrospray tandem mass spectrometry (ES-TMS). CB was extracted from a basified urine sample (donor phase) into the organic solvent residing in the pores of a freely moving hollow fiber and then back extracted into an acidic solution (acceptor phase) inside the lumen of the hollow fiber. The ends of the fiber were pressure-sealed. Here, forward and back extraction took place spontaneously. We studied various parameters affecting the extraction efficiency viz. type of organic solvent (octanol, nonanol and dihexyl ether) used for immobilization in the pores of the hollow fiber, i.e. extraction time (10-40 min), stirring speed (0-1000 rpm), effect of sodium chloride (0-25%, w/v) and concentration of the donor (0.25-3 M NaOH) and the acceptor (0.5-5 M formic acid) phases. After extraction, CB was analyzed by injecting the analyte enriched acceptor phase into LC combined with ES-TMS. Enrichment factor (79), repeatability (R.S.D. = 5.1%), correlation coefficient (0.9972, for the range of 0.1-4 ng mL−1), detection limit (7 pg mL−1) were also investigated. The present technique is compared with the reported solid phase microextraction techniques in terms of selectivity, analysis time per extraction, cost of analysis per extraction, and precision. Among all microextraction techniques reported, this technique is the most economical sample preparation/preconcentration technique to our knowledge. The method was applied for the analysis of CB in human urine.  相似文献   

3.
The reviews cover important critical parameters that are often optimized in a supported liquid membrane extraction technique in both flat sheet and hollow fibre designs for ionizable organic molecules. Understanding of these parameters can enable one to predict the behavior of the compound before hand and thus reduce the number of optimization experiments. Moreover, less number of experiments can be also generated using statistical techniques which are now becoming more commonly used. Supported liquid membrane extraction optimal parameters such as the conditions of the pH of the acceptor and donor phases should easily be fixed from the pKa values of the compounds. Other parameters, including the polarity of the compound can help to predict the partitioning into the membrane and the behavior of the compound. The influence of parameters such as temperature on the mass transfer in supported liquid membrane depends on the design of the module, experimental design and type of mass transfer controlling the extraction process.  相似文献   

4.
Optimizing separation of ionizable compounds in order to find robust conditions has become an important part of method development in liquid chromatography. This work is an attempt to explain the observed variations of retention of acid and basic compounds with the organic modifier content in the mobile phase, according to various factors: the type of modifier, the type of buffer, the temperature and of course the type of solute. This is done by considering the variation of the so-called chromatographic pKa which refers to the pH measured in the aqueous medium and is determined from retention data. A procedure is described that accurately relates, from nine experiments, retention to solvent composition and pH. The limits of such a procedure are evaluated and two examples of optimized separations of basic compounds are given.  相似文献   

5.
Manju Gupta 《Talanta》2009,80(2):526-385
A simple and rapid method has been reported for the determination of carbonyl compounds involving reaction with 2,4-dinitrophenylhydrazine and extraction of hydrazones with water-miscible organic solvent acetonitrile when the phase separation occurs by addition of ammonium sulphate, a process called salt-assisted liquid-liquid microextraction. The extract was analyzed by high-performance liquid chromatography with UV detection at 360 nm. The procedure has been optimized with respect to solvent suitable for extraction, salt for phase separation between water and organic solvent, reaction temperature and reaction time. The method has been validated when a linear dynamic range was obtained between the amount of analyte and peak area of hydrazones in the range 7 μg-15 mg L−1, the correlation coefficient over 0.9964-0.9991, and the limit of detection in the range 0.58-3.2 μg L−1. Spiked water samples have been analyzed with adequate accuracy, and application of the method has been demonstrated in the analysis of benzaldehyde formed as oxidation product in pharmaceutical preparation where benzyl alcohol is used as preservative, and for a keto drug dexketoprofen.  相似文献   

6.
A liquid‐phase microextraction method that uses a hollow‐fiber solvent bar microextraction technique was developed by combining gas chromatography with electron capture detection for the analysis of four trihalomethanes (chloroform, dichlorobromomethane, chlorodibromomethane, and bromoform) in drinking water. In the microextraction process, 1‐octanol was used as the solvent. The technique operates in a two‐phase mode with a 5 min extraction time, a 700 rpm stirring speed, a 30°C extraction temperature, and NaCl concentration of 20%. After microextraction, one edge of the membrane was cut, and 1 μL of solvent was collected from the membrane using a 10 μL syringe. The solvent sample was directly injected into the gas chromatograph. The analytical characteristics of the developed method were as follows: detection limits, 0.017–0.037 ng mL−1; linear working range, 10–900 ng mL−1; recovery, 74 ± 9–91 ± 2; relative standard deviation, 5.7–10.3; and enrichment factor, 330–455. A simple, fast, economic, selective, and efficient method with big possibilities for automation was developed with a potential use to apply with other matrices and analytes.  相似文献   

7.
Summary Solid-phase microextraction is a relatively recent extraction technique for sample preparation. It has been used successfully to analyse environmental pollutants in a variety of matrices such as soils, water and air. In this work, a simple and rapid method for the analysis of volatile organic and polar compounds from polluted groundwater samples by SPME coupled with gas chromatography (GC) is described. Different types of fibres were studied and the extraction process was optimised. The fibre that proved to be the best to analyse this kind of samples was CAR-PDMS. The method was validated by analysis of synthetic samples and comparison with headspace—GC. The optimised method was successfully applied to the analysis of ground-water samples.  相似文献   

8.
Salvia spp. are used throughout the world both for food and pharmaceutical purposes. In this study, a method involving headspace solid-phase microextraction combined with gas chromatography–mass spectrometry was developed, to establish the volatiles profile of dried leaves of four Iranian Salvia spp.: Salvia officinalis L., Salvia leriifolia Benth, Salvia macrosiphon Boiss. and two ecotypes of Salvia reuterana Boiss. A total of 95 volatiles were identified from the dried leaves of the five selected samples. Specifically, α-thujone was the main component of S. officinalis L. and S. macrosiphon Boiss. (34.40 and 17.84%, respectively) dried leaves, S. leriifolia Benth was dominated by β-pinene (27.03%), whereas α-terpinene was the major constituent of the two ecotypes of S. reuterana Boiss. (21.67 and 13.84%, respectively). These results suggested that the proposed method can be considered as a reliable technique for isolating volatiles from aromatic plants, and for plant differentiation based on the volatile metabolomic profile.  相似文献   

9.
A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett-Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time and temperature), and then a central composite design was used to optimize the significant conditions. The optimum experimental conditions found from this statistical evaluation were: a 5 μL microdrop of 1-butyl-3-methylimidazolium hexafluorophosphate, exposed for 37 min to the headspace of a 10 mL aqueous sample placed in a 15 mL vial, stirred at 1580 rpm at room temperature and containing 30% (w/v) NaCl. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9981 and 0.9997. The repeatability of the proposed method, expressed as relative standard deviation, varied between 1.6 and 5.1% (n = 5). The limits of detection ranged between 0.102 and 0.203 μg L−1. Matrix effects upon extraction were evaluated by analysing spiked tap and river water as well as effluent water samples originating from a municipal wastewater treatment plant.  相似文献   

10.
A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L−1) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 μL), then back-extracted into the 6 μL acidified aqueous solution (acceptor phase, HCl 0.5 mol L−1) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 μL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L−1 NaOH with 10% NaCl; organic phase: 20 μL of toluene; acceptor phase: 6 μL of 0.5 mol L−1 HCl and 600 m mol L−1 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 μg L−1 (R > 0.9991), and also the limits of detection were in the range of 0.01-0.1 μg L−1. The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.  相似文献   

11.
Volatile organic compounds (VOCs) are toxic compounds in the air, water and land. In the proposed method, ultrasound-assisted emulsification microextraction (USAEME) combined with gas chromatography-mass spectrometry (GC-MS) has been developed for the extraction and determination of eight VOCs in water samples. The influence of each experimental parameter of this method (the type of extraction solvent, volume of extraction solvent, salt addition, sonication time and extraction temperature) was optimized. The procedure for USAEME was as follows: 15 μL of 1-bromooctane was used as the extraction solvent; 10 mL sample solution in a centrifuge tube with a cover was then placed in an ultrasonic water bath for 3 min. After centrifugation, 2 μL of the settled 1-bromooctane extract was injected into the GC-MS for further analysis. The optimized results indicated that the linear range is 0.1-100.0 μg/L and the limits of detection (LODs) are 0.033-0.092 μg/L for the eight analytes. The relative standard deviations (RSD), enrichment factors (EFs) and relative recoveries (RR) of the method when used on lake water samples were 2.8-9.5, 96-284 and 83-110%. The performance of the proposed method was gauged by analyzing samples of tap water, lake water and river water samples.  相似文献   

12.
A new sample preparation method named directly suspended droplet liquid-liquid-liquid phase microextraction was used in this research for determination of three chlorophenols in environmental water samples. The analytes (2-chlorophenol, 3-chlorophenol and 4-chlorophenol) were extracted from 4.5?mL acidic donor phase, (pH 2, P1) into an organic phase, 350?µL?of benzene/1-octanol (90?:?10 v/v, P2) and then were back-extracted into a 7?µL droplet of an basic (pH 13) aqueous solution (acceptor phase, P3). In this method, contrary to the ordinary single drop liquid-phase microextraction technique, an aqueous large droplet is freely suspended on the surface of the organic solvent, without using a microsyringe as supporting device. This aqueous microdroplet is delivered at the top-centre position of an immiscible organic solvent which is laid over the aqueous donor sample solution while the solution is being agitated. Then, the acceptor phase containing chlorophenols was withdrawn back into a HPLC microsyringe and neutralised by adding of 7?µL HCl 0.1?M. The total amount was eventually injected into the HPLC system with UV detection at 225?nm for further analysis. Parameters such as the organic solvent, phases volumes, extraction and back-extraction times, stirring rate and pH values were optimised. The calibration graphs are linear in the range of 10–2000?µg?L?1 with r?≥?0.9973. The enrichment factors were ranged from 115 to 170, and the limit of detection (LOD, n?=?7) varied from 5 to 10?µg?L?1. The relative standard deviations (RSDs, n?=?5) were found 6.8 to 7.4 at S/N?=?3. All experiments were carried out at room temperature, (22?±?0.5°C).  相似文献   

13.
Sample preparation is an essential step in analysis, greatly influencing the reliability and accuracy of resulted the time and cost of analysis. Solid-Phase Microextraction (SPME) is a very simple and efficient, solventless sample preparation method, invented by Pawliszyn in 1989. SPME has been widely used in different fields of analytical chemistry since its first applications to environmental and food analysis and is ideally suited for coupling with mass spectrometry (MS). All steps of the conventional liquid-liquid extraction (LLE) such as extraction, concentration, (derivatization) and transfer to the chromatograph are integrated into one step and one device, considerably simplifying the sample preparation procedure. It uses a fused-silica fibre that is coated on the outside with an appropriate stationary phase. The analytes in the sample are directly extracted to the fibre coating. The SPME technique can be routinely used in combination with gas chromatography, high-performance liquid chromatography and capillary electrophoresis and places no restriction on MS. SPME reduces the time necessary for sample preparation, decreases purchase and disposal costs of solvents and can improve detection limits. The SPME technique is ideally suited for MS applications, combining a simple and efficient sample preparation with versatile and sensitive detection. This review summarizes analytical characteristics and variants of the SPME technique and its applications in combination with MS.  相似文献   

14.
Three-phase hollow fiber microextraction technique combined with high performance liquid chromatography-ultra violet (HPLC-UV) was applied for the extraction and determination of gabapentin in biological fluids. Gabapentin (GBP) was derivatized with 1-fluoro-2,4-dinitrobenzene, as a UV absorbent agent in borate buffer (pH 8.2) before extraction. The derivative product of GBP was extracted from the 8.5 mL of acidic solution (source phase) into an organic phase (dihexyl ether) impregnated in the pores of a hollow fiber and finally back-extracted into 24 μL of the basic solution (pH 9.1) located inside the lumen of the hollow fiber (receiving phase). The extraction took place due to pH gradient between the inside and outside of the hollow fiber membrane. In order to achieve maximum extraction efficiency, different parameters affecting the extraction conditions were optimized. Under the optimized conditions, preconcentration factor of 95 and detection limit (LOD) of 0.2 μg L−1 were obtained. The calibration graph was linear within the range of 0.6-5000 μg L−1. Finally, the feasibility of the proposed method was successfully confirmed by extraction and determination of GBP in human urine and plasma samples in the range of microgram per liter and suitable results were obtained (RSDs < 6.3%).  相似文献   

15.
Sarcosine is a potential prostate cancer marker. In this study, we developed a method of three‐phase solvent bar liquid‐phase microextraction combined with high‐performance liquid chromatography to determine sarcosine after derivatization with 4‐dimethylarminoazobenzene‐4‐sulfonyl chloride from human urine. The effects of different extraction conditions on extraction efficiency were investigated and optimized. Under optimum experimental conditions, a calibration graph exhibited linearity over the range of 0.05–25 μmol/L with a correlation coefficient (r2) of 0.9990. The enrichment factor was 168, and the detection limit was 0.02 μmol/L. The method was successfully used to analyze sarcosine in human urine and non‐invasive detection, and good spiked recoveries ranging from 90.5 to 93.6% were obtained. The proposed method exhibited high sensitivity, high enrichment factor, good precision, and a simple setup. It may contribute to the early accurate diagnosis and the progression monitoring of prostatic carcinoma.  相似文献   

16.
A procedure for the determination of less polar heterocyclic amines in meat extracts using solid phase microextraction (SPME) coupled to high-performance liquid chromatography (HPLC) with fluorescence detection is presented. Analytes were first extracted from the samples using methanol/NaOH by an ultrasound-assisted method, and then concentrated on a Carbowax-templated resin (CW-TPR) SPME fiber. The extraction conditions such as extractant mixture composition, extraction time and extractions number, were optimized and the need of an extract freezing step previous to SPME is discussed. The detection limits under optimal conditions are in the range of 0.28-1.1 ng g−1. The method was applied to the determination of less polar heterocyclic amines in four commercial meat extracts. Recovery values obtained are higher than 60% for the majority of amines.  相似文献   

17.
A rapid, efficient, and new solvent terminated dispersive liquid–liquid microextraction technique coupled with HPLC was developed for selective extraction and analysis of s‐triazine herbicides from environmental water samples. Important parameters influencing the extraction process including type and volume of extraction and disperser solvent, extraction time, sample pH, ionic strength, and extraction temperature were successfully optimized. Under the optimal conditions, there are excellent linear relationships between the analytical results and concentration in the range of 10–400 mg/L for atrazine, propazine, prometryn, and terbutryn. LOD and LOQ ranged from 0.60 to 2.33 μg/L and 2.0 to 7.7 μg/L, respectively. Performance of the analytical technique was evaluated by carrying out the repeatability and reproducibility analyses that were ranged from 2.86 to 5.66% and 4.64 to 5.89% for 100 μg/L of each target analyte, respectively. The proposed method has been successfully applied to the analysis of real water samples and acceptable relative recoveries over the range of 65.93–101.46%, with RSDs ≤ 8.80%, were obtained. The overall results have been compared with the literature values. Thus, the method developed could efficiently be used for selective extraction of the target analytes from complex matrices, particularly environmental waters.  相似文献   

18.
建立了顶空固相微萃取(HSSPME)-气相色谱(GC)-质谱(MS)联用测定纺织品中甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯5种挥发性有机物(VOCs)的分析方法。选择聚二甲基硅氧烷(PDMS)作为萃取涂层,优化了SPME的萃取条件,包括平衡时间、萃取时间、萃取温度、顶空体积、离子强度、搅拌速度、解吸温度和时间以及GC—MS仪器条件。对于甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯方法线性范围分别为0.087~870、3.32~3320、2.28~2280、0.015~150和0.050~50.0ng/g;检出限分别为0.005、0.042、0.670、0.008和0.011ng/g。实际样品加标回收率在80.1%~122%之间,RSD在0.8%~8.6%之间。方法符合纺织品中痕量VOCs的快速分析要求。  相似文献   

19.
We present a new procedure for the determination of oxygenated volatile organic compounds in samples of postoxidative effluents from the production of petroleum bitumens using dispersive liquid–liquid microextraction and gas chromatography with mass spectrometry. The eight extraction parameters were optimized for 43 oxygenated volatile organic compounds. The detection limits obtained ranged from 0.07 to 0.82 μg/mL for most of the analytes, the precision was good (relative standard deviation below 2.91% at the 5 μg/mL level and 4.75% at the limit of quantification), the recoveries for the majority of compounds varied from 70.6 to 118.9%, and the linear range was wide, which demonstrates the usefulness of the procedure. The developed procedure was used for the determination of oxygenated volatile organic compounds in samples of raw postoxidative effluents and in effluents after chemical treatment. In total, 23 compounds at concentration levels from 0.37 to 32.95 μg/mL were identified in real samples. The same samples were also analyzed in the SCAN mode, which resulted in four more phenol derivatives being identified and tentatively determined. The studies demonstrated the need for monitoring volatile organic compounds content in effluents following various treatments due to the formation of secondary oxygenated volatile organic compounds.  相似文献   

20.
A headspace solvent microextraction method was developed for the trace determination of geosmin, an odorant compound, in water samples. After performing the extraction by a microdrop of an organic solvent, the microdrop was introduced directly into a GC-MS injection port. One-at-the-time optimization strategy was applied to investigate and optimize some important extraction parameters such as type of solvent, drop volume, temperature, stirring rate, ionic strength, sample volume, and extraction time. The analytical data exhibited an RSD of less than 5% (n = 5), a linear calibration range of 5-900 ng/L (r2 > 0.998), and a detection limit of 0.8 and 3.3 ng/L using two different sets of selected ions. The proposed method was successfully applied to the extraction and determination of geosmin in the spiked real water sample and reasonable recovery was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号